具有竞争立方-五次非线性的介质中的椭圆和矩形孤子

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Liangwei Zeng , Milivoj R. Belić , Dumitru Mihalache , Xing Zhu
{"title":"具有竞争立方-五次非线性的介质中的椭圆和矩形孤子","authors":"Liangwei Zeng ,&nbsp;Milivoj R. Belić ,&nbsp;Dumitru Mihalache ,&nbsp;Xing Zhu","doi":"10.1016/j.chaos.2024.114645","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate two new types of non-circularly-symmetric solitons, the elliptical and rectangular solitons, which can be sustained by the cubic–quintic nonlinearity in the nonlinear Schrödinger equation with a linear potential well. The characteristics of these solitons are investigated in some detail. Notably, the elliptical and circular solitons can transform into each other, and similarly the rectangular and square solitons can transform into each other. Interestingly, we find that elliptical and rectangular solitons can also transform into each other—a phenomenon not readily seen among different types of solitons. In addition, the rotation of elliptical and rectangular solitons is displayed as well. Finally, we find that stable vortex modes of elliptical and rectangular solitons can be also supported by our model.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptical and rectangular solitons in media with competing cubic–quintic nonlinearities\",\"authors\":\"Liangwei Zeng ,&nbsp;Milivoj R. Belić ,&nbsp;Dumitru Mihalache ,&nbsp;Xing Zhu\",\"doi\":\"10.1016/j.chaos.2024.114645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate two new types of non-circularly-symmetric solitons, the elliptical and rectangular solitons, which can be sustained by the cubic–quintic nonlinearity in the nonlinear Schrödinger equation with a linear potential well. The characteristics of these solitons are investigated in some detail. Notably, the elliptical and circular solitons can transform into each other, and similarly the rectangular and square solitons can transform into each other. Interestingly, we find that elliptical and rectangular solitons can also transform into each other—a phenomenon not readily seen among different types of solitons. In addition, the rotation of elliptical and rectangular solitons is displayed as well. Finally, we find that stable vortex modes of elliptical and rectangular solitons can be also supported by our model.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924001966\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924001966","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了两种新型非圆对称孤子--椭圆孤子和矩形孤子,它们可以通过具有线性势阱的非线性薛定谔方程中的三次-五次非线性来维持。本文对这些孤子的特性进行了详细研究。值得注意的是,椭圆孤子和圆形孤子可以相互转化,同样,矩形孤子和正方形孤子也可以相互转化。有趣的是,我们发现椭圆孤子和矩形孤子也能相互转化--这种现象在不同类型的孤子中并不常见。此外,椭圆孤子和矩形孤子还可以旋转。最后,我们发现我们的模型还支持椭圆孤子和矩形孤子的稳定涡旋模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elliptical and rectangular solitons in media with competing cubic–quintic nonlinearities

We demonstrate two new types of non-circularly-symmetric solitons, the elliptical and rectangular solitons, which can be sustained by the cubic–quintic nonlinearity in the nonlinear Schrödinger equation with a linear potential well. The characteristics of these solitons are investigated in some detail. Notably, the elliptical and circular solitons can transform into each other, and similarly the rectangular and square solitons can transform into each other. Interestingly, we find that elliptical and rectangular solitons can also transform into each other—a phenomenon not readily seen among different types of solitons. In addition, the rotation of elliptical and rectangular solitons is displayed as well. Finally, we find that stable vortex modes of elliptical and rectangular solitons can be also supported by our model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信