Ibrahim Sabry , Virendra Pratap Singh , Mohammad Alkhedher , Noah E. El-Zathry , Abdel-Hamid I. Mourad , Majid Naseri
{"title":"旋转速度和熔深对水下和传统搅拌摩擦焊铝镁硅合金焊接 T 型接头的影响","authors":"Ibrahim Sabry , Virendra Pratap Singh , Mohammad Alkhedher , Noah E. El-Zathry , Abdel-Hamid I. Mourad , Majid Naseri","doi":"10.1016/j.jajp.2024.100207","DOIUrl":null,"url":null,"abstract":"<div><p>The present work deals with the effect of penetration depth on welding T-joints through conventional friction stir welding (FSW) as well as underwater friction stir welding (UFSW). Various set of parameters have been used such as tool rotational speeds of 1000, 1400, and 1800 rpm, and depths of penetration, such as 6, 7, and 8 mm. In UFSW, lower heat generation prevents the development of complex intermetallic compounds and defects in welding. Additionally, in the weld region, a rapid cooling rate in UFSW generates fine microstructural particles. Mechanical and microstructural characteristics has been compared in both UFSW and FSW. There was a substantial grain size effect on mechanical properties. The stir zone shows comparatively finer grains with average grain size of 49.76 µm at 1800 rpm and 7 mm depth of penetration. It was seen that the tensile strength of UFSW was 189.9 MPa and the nugget zone hardness was 70 VHN, compared to the FSW that has 175.2 MPa and 62 VHN, respectively, obtained at a rotation speed of 1800 rpm and a travel speed of 60 mm/min. The joints tested at various penetration depths show a significant number of uniform and equiaxed dimples. The presence of ductile rupture and the formation of dimples suggest that the joints were effectively bonded and tested at different strain rates.</p></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"9 ","pages":"Article 100207"},"PeriodicalIF":3.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666330924000244/pdfft?md5=43c022b5749a25d4b1be9a300de7ad12&pid=1-s2.0-S2666330924000244-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of rotational speed and penetration depth on Al-Mg-Si welded T-joints through underwater and conventional friction stir welding\",\"authors\":\"Ibrahim Sabry , Virendra Pratap Singh , Mohammad Alkhedher , Noah E. El-Zathry , Abdel-Hamid I. Mourad , Majid Naseri\",\"doi\":\"10.1016/j.jajp.2024.100207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present work deals with the effect of penetration depth on welding T-joints through conventional friction stir welding (FSW) as well as underwater friction stir welding (UFSW). Various set of parameters have been used such as tool rotational speeds of 1000, 1400, and 1800 rpm, and depths of penetration, such as 6, 7, and 8 mm. In UFSW, lower heat generation prevents the development of complex intermetallic compounds and defects in welding. Additionally, in the weld region, a rapid cooling rate in UFSW generates fine microstructural particles. Mechanical and microstructural characteristics has been compared in both UFSW and FSW. There was a substantial grain size effect on mechanical properties. The stir zone shows comparatively finer grains with average grain size of 49.76 µm at 1800 rpm and 7 mm depth of penetration. It was seen that the tensile strength of UFSW was 189.9 MPa and the nugget zone hardness was 70 VHN, compared to the FSW that has 175.2 MPa and 62 VHN, respectively, obtained at a rotation speed of 1800 rpm and a travel speed of 60 mm/min. The joints tested at various penetration depths show a significant number of uniform and equiaxed dimples. The presence of ductile rupture and the formation of dimples suggest that the joints were effectively bonded and tested at different strain rates.</p></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"9 \",\"pages\":\"Article 100207\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000244/pdfft?md5=43c022b5749a25d4b1be9a300de7ad12&pid=1-s2.0-S2666330924000244-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of rotational speed and penetration depth on Al-Mg-Si welded T-joints through underwater and conventional friction stir welding
The present work deals with the effect of penetration depth on welding T-joints through conventional friction stir welding (FSW) as well as underwater friction stir welding (UFSW). Various set of parameters have been used such as tool rotational speeds of 1000, 1400, and 1800 rpm, and depths of penetration, such as 6, 7, and 8 mm. In UFSW, lower heat generation prevents the development of complex intermetallic compounds and defects in welding. Additionally, in the weld region, a rapid cooling rate in UFSW generates fine microstructural particles. Mechanical and microstructural characteristics has been compared in both UFSW and FSW. There was a substantial grain size effect on mechanical properties. The stir zone shows comparatively finer grains with average grain size of 49.76 µm at 1800 rpm and 7 mm depth of penetration. It was seen that the tensile strength of UFSW was 189.9 MPa and the nugget zone hardness was 70 VHN, compared to the FSW that has 175.2 MPa and 62 VHN, respectively, obtained at a rotation speed of 1800 rpm and a travel speed of 60 mm/min. The joints tested at various penetration depths show a significant number of uniform and equiaxed dimples. The presence of ductile rupture and the formation of dimples suggest that the joints were effectively bonded and tested at different strain rates.