用于监督神经图像搜索的深度贝叶斯量化。

Erkun Yang, Cheng Deng, Mingxia Liu
{"title":"用于监督神经图像搜索的深度贝叶斯量化。","authors":"Erkun Yang, Cheng Deng, Mingxia Liu","doi":"10.1007/978-3-031-45676-3_40","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimage retrieval plays a crucial role in providing physicians with access to previous similar cases, which is essential for case-based reasoning and evidence-based medicine. Due to low computation and storage costs, hashing-based search techniques have been widely adopted for establishing image retrieval systems. However, these methods often suffer from nonnegligible quantization loss, which can degrade the overall search performance. To address this issue, this paper presents a compact coding solution namely <i>Deep Bayesian Quantization</i> (DBQ), which focuses on deep compact quantization that can estimate continuous neuroimage representations and achieve superior performance over existing hashing solutions. Specifically, DBQ seamlessly combines the deep representation learning and the representation compact quantization within a novel Bayesian learning framework, where a proxy embedding-based likelihood function is developed to alleviate the sampling issue for traditional similarity supervision. Additionally, a Gaussian prior is employed to reduce the quantization losses. By utilizing pre-computed lookup tables, the proposed DBQ can enable efficient and effective similarity search. Extensive experiments conducted on 2, 008 structural MRI scans from three benchmark neuroimage datasets demonstrate that our method outperforms previous state-of-the-arts.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"14349 ","pages":"396-406"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Bayesian Quantization for Supervised Neuroimage Search.\",\"authors\":\"Erkun Yang, Cheng Deng, Mingxia Liu\",\"doi\":\"10.1007/978-3-031-45676-3_40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimage retrieval plays a crucial role in providing physicians with access to previous similar cases, which is essential for case-based reasoning and evidence-based medicine. Due to low computation and storage costs, hashing-based search techniques have been widely adopted for establishing image retrieval systems. However, these methods often suffer from nonnegligible quantization loss, which can degrade the overall search performance. To address this issue, this paper presents a compact coding solution namely <i>Deep Bayesian Quantization</i> (DBQ), which focuses on deep compact quantization that can estimate continuous neuroimage representations and achieve superior performance over existing hashing solutions. Specifically, DBQ seamlessly combines the deep representation learning and the representation compact quantization within a novel Bayesian learning framework, where a proxy embedding-based likelihood function is developed to alleviate the sampling issue for traditional similarity supervision. Additionally, a Gaussian prior is employed to reduce the quantization losses. By utilizing pre-computed lookup tables, the proposed DBQ can enable efficient and effective similarity search. Extensive experiments conducted on 2, 008 structural MRI scans from three benchmark neuroimage datasets demonstrate that our method outperforms previous state-of-the-arts.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"14349 \",\"pages\":\"396-406\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-45676-3_40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-45676-3_40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经图像检索在为医生提供以往类似病例方面发挥着至关重要的作用,这对于基于病例的推理和循证医学至关重要。由于计算和存储成本低,基于散列的搜索技术已被广泛用于建立图像检索系统。然而,这些方法往往存在不可忽略的量化损失,这会降低整体搜索性能。为了解决这个问题,本文提出了一种紧凑型编码解决方案,即深度贝叶斯量化(DBQ),它侧重于深度紧凑量化,可以估计连续的神经图像表征,并实现优于现有散列解决方案的性能。具体来说,DBQ 在一个新颖的贝叶斯学习框架内无缝结合了深度表征学习和表征紧凑量化,其中开发了一个基于代理嵌入的似然函数,以减轻传统相似性监督的采样问题。此外,还采用了高斯先验来减少量化损失。通过利用预先计算的查找表,所提出的 DBQ 可以实现高效和有效的相似性搜索。在三个基准神经图像数据集的 2,008 个结构性 MRI 扫描上进行的广泛实验表明,我们的方法优于之前的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Bayesian Quantization for Supervised Neuroimage Search.

Neuroimage retrieval plays a crucial role in providing physicians with access to previous similar cases, which is essential for case-based reasoning and evidence-based medicine. Due to low computation and storage costs, hashing-based search techniques have been widely adopted for establishing image retrieval systems. However, these methods often suffer from nonnegligible quantization loss, which can degrade the overall search performance. To address this issue, this paper presents a compact coding solution namely Deep Bayesian Quantization (DBQ), which focuses on deep compact quantization that can estimate continuous neuroimage representations and achieve superior performance over existing hashing solutions. Specifically, DBQ seamlessly combines the deep representation learning and the representation compact quantization within a novel Bayesian learning framework, where a proxy embedding-based likelihood function is developed to alleviate the sampling issue for traditional similarity supervision. Additionally, a Gaussian prior is employed to reduce the quantization losses. By utilizing pre-computed lookup tables, the proposed DBQ can enable efficient and effective similarity search. Extensive experiments conducted on 2, 008 structural MRI scans from three benchmark neuroimage datasets demonstrate that our method outperforms previous state-of-the-arts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信