{"title":"在虚拟环境中行走时,区分碰撞和非碰撞行人的自我中心界限。","authors":"Alex D Hwang, Jaehyun Jung, Alex Bowers, Eli Peli","doi":"10.2352/EI.2024.36.11.HVEI-214","DOIUrl":null,"url":null,"abstract":"<p><p>Avoiding person-to-person collisions is critical for visual field loss patients. Any intervention claiming to improve the safety of such patients should empirically demonstrate its efficacy. To design a VR mobility testing platform presenting multiple pedestrians, a distinction between colliding and non-colliding pedestrians must be clearly defined. We measured nine normally sighted subjects' collision envelopes (CE; an egocentric boundary distinguishing collision and non-collision) and found it changes based on the approaching pedestrian's bearing angle and speed. For person-to-person collision events for the VR mobility testing platform, non-colliding pedestrians should not evade the CE.</p>","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"36 ","pages":"2141-2148"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883473/pdf/","citationCount":"0","resultStr":"{\"title\":\"Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment.\",\"authors\":\"Alex D Hwang, Jaehyun Jung, Alex Bowers, Eli Peli\",\"doi\":\"10.2352/EI.2024.36.11.HVEI-214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Avoiding person-to-person collisions is critical for visual field loss patients. Any intervention claiming to improve the safety of such patients should empirically demonstrate its efficacy. To design a VR mobility testing platform presenting multiple pedestrians, a distinction between colliding and non-colliding pedestrians must be clearly defined. We measured nine normally sighted subjects' collision envelopes (CE; an egocentric boundary distinguishing collision and non-collision) and found it changes based on the approaching pedestrian's bearing angle and speed. For person-to-person collision events for the VR mobility testing platform, non-colliding pedestrians should not evade the CE.</p>\",\"PeriodicalId\":73514,\"journal\":{\"name\":\"IS&T International Symposium on Electronic Imaging\",\"volume\":\"36 \",\"pages\":\"2141-2148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IS&T International Symposium on Electronic Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/EI.2024.36.11.HVEI-214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/EI.2024.36.11.HVEI-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment.
Avoiding person-to-person collisions is critical for visual field loss patients. Any intervention claiming to improve the safety of such patients should empirically demonstrate its efficacy. To design a VR mobility testing platform presenting multiple pedestrians, a distinction between colliding and non-colliding pedestrians must be clearly defined. We measured nine normally sighted subjects' collision envelopes (CE; an egocentric boundary distinguishing collision and non-collision) and found it changes based on the approaching pedestrian's bearing angle and speed. For person-to-person collision events for the VR mobility testing platform, non-colliding pedestrians should not evade the CE.