NMF 聚类:利用 GPU 加速的基于 NMF 的无障碍聚类。

Ted Liefeld, Edwin Huang, Alexander T Wenzel, Kenneth Yoshimoto, Ashwyn K Sharma, Jason K Sicklick, Jill P Mesirov, Michael Reich
{"title":"NMF 聚类:利用 GPU 加速的基于 NMF 的无障碍聚类。","authors":"Ted Liefeld, Edwin Huang, Alexander T Wenzel, Kenneth Yoshimoto, Ashwyn K Sharma, Jason K Sicklick, Jill P Mesirov, Michael Reich","doi":"10.26502/jbsb.5107072","DOIUrl":null,"url":null,"abstract":"<p><p>Non-negative Matrix Factorization (NMF) is an algorithm that can reduce high dimensional datasets of tens of thousands of genes to a handful of metagenes which are biologically easier to interpret. Application of NMF on gene expression data has been limited by its computationally intensive nature, which hinders its use on large datasets such as single-cell RNA sequencing (scRNA-seq) count matrices. We have implemented NMF based clustering to run on high performance GPU compute nodes using CuPy, a GPU backed python library, and the Message Passing Interface (MPI). This reduces the computation time by up to three orders of magnitude and makes the NMF Clustering analysis of large RNA-Seq and scRNA-seq datasets practical. We have made the method freely available through the GenePattern gateway, which provides free public access to hundreds of tools for the analysis and visualization of multiple 'omic data types. Its web-based interface gives easy access to these tools and allows the creation of multi-step analysis pipelines on high performance computing (HPC) clusters that enable reproducible <i>in silico</i> research for non-programmers.</p>","PeriodicalId":73617,"journal":{"name":"Journal of bioinformatics and systems biology : Open access","volume":"6 4","pages":"379-383"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883375/pdf/","citationCount":"0","resultStr":"{\"title\":\"NMF Clustering: Accessible NMF-based Clustering Utilizing GPU Acceleration.\",\"authors\":\"Ted Liefeld, Edwin Huang, Alexander T Wenzel, Kenneth Yoshimoto, Ashwyn K Sharma, Jason K Sicklick, Jill P Mesirov, Michael Reich\",\"doi\":\"10.26502/jbsb.5107072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-negative Matrix Factorization (NMF) is an algorithm that can reduce high dimensional datasets of tens of thousands of genes to a handful of metagenes which are biologically easier to interpret. Application of NMF on gene expression data has been limited by its computationally intensive nature, which hinders its use on large datasets such as single-cell RNA sequencing (scRNA-seq) count matrices. We have implemented NMF based clustering to run on high performance GPU compute nodes using CuPy, a GPU backed python library, and the Message Passing Interface (MPI). This reduces the computation time by up to three orders of magnitude and makes the NMF Clustering analysis of large RNA-Seq and scRNA-seq datasets practical. We have made the method freely available through the GenePattern gateway, which provides free public access to hundreds of tools for the analysis and visualization of multiple 'omic data types. Its web-based interface gives easy access to these tools and allows the creation of multi-step analysis pipelines on high performance computing (HPC) clusters that enable reproducible <i>in silico</i> research for non-programmers.</p>\",\"PeriodicalId\":73617,\"journal\":{\"name\":\"Journal of bioinformatics and systems biology : Open access\",\"volume\":\"6 4\",\"pages\":\"379-383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioinformatics and systems biology : Open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/jbsb.5107072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioinformatics and systems biology : Open access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbsb.5107072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非负矩阵因式分解(NMF)是一种算法,可将数以万计基因的高维数据集缩减为少量元基因,从而更容易从生物学角度进行解释。NMF 在基因表达数据上的应用一直受限于其计算密集的特性,这阻碍了它在单细胞 RNA 测序(scRNA-seq)计数矩阵等大型数据集上的应用。我们利用支持 GPU 的 Python 库 CuPy 和消息传递接口 (MPI),在高性能 GPU 计算节点上实现了基于 NMF 的聚类。这将计算时间缩短了三个数量级,使大型 RNA-Seq 和 scRNA-seq 数据集的 NMF 聚类分析成为现实。我们通过 GenePattern 网关免费提供该方法,该网关可免费向公众提供数百种工具,用于分析和可视化多种 "omic "数据类型。它基于网络的界面可以方便地访问这些工具,并允许在高性能计算(HPC)集群上创建多步骤分析管道,使非程序员也能进行可重复的硅学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMF Clustering: Accessible NMF-based Clustering Utilizing GPU Acceleration.

Non-negative Matrix Factorization (NMF) is an algorithm that can reduce high dimensional datasets of tens of thousands of genes to a handful of metagenes which are biologically easier to interpret. Application of NMF on gene expression data has been limited by its computationally intensive nature, which hinders its use on large datasets such as single-cell RNA sequencing (scRNA-seq) count matrices. We have implemented NMF based clustering to run on high performance GPU compute nodes using CuPy, a GPU backed python library, and the Message Passing Interface (MPI). This reduces the computation time by up to three orders of magnitude and makes the NMF Clustering analysis of large RNA-Seq and scRNA-seq datasets practical. We have made the method freely available through the GenePattern gateway, which provides free public access to hundreds of tools for the analysis and visualization of multiple 'omic data types. Its web-based interface gives easy access to these tools and allows the creation of multi-step analysis pipelines on high performance computing (HPC) clusters that enable reproducible in silico research for non-programmers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信