GAM-MDR:使用基于随机路径屏蔽的图自动编码器探测 miRNA-耐药性。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhecheng Zhou, Zhenya Du, Xin Jiang, Linlin Zhuo, Yixin Xu, Xiangzheng Fu, Mingzhe Liu, Quan Zou
{"title":"GAM-MDR:使用基于随机路径屏蔽的图自动编码器探测 miRNA-耐药性。","authors":"Zhecheng Zhou, Zhenya Du, Xin Jiang, Linlin Zhuo, Yixin Xu, Xiangzheng Fu, Mingzhe Liu, Quan Zou","doi":"10.1093/bfgp/elae005","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAM-MDR: probing miRNA-drug resistance using a graph autoencoder based on random path masking.\",\"authors\":\"Zhecheng Zhou, Zhenya Du, Xin Jiang, Linlin Zhuo, Yixin Xu, Xiangzheng Fu, Mingzhe Liu, Quan Zou\",\"doi\":\"10.1093/bfgp/elae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elae005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

微小核糖核酸(miRNA)遍布于生物细胞中,在调节众多靶基因的表达方面发挥着关键作用。以 miRNA 为中心的疗法正在成为一种前景广阔的疾病治疗策略,旨在通过调节异常的 miRNA 表达来干预疾病的进展。准确预测 miRNA 耐药性(MDR)对于 miRNA 疗法的成功至关重要。基于深度学习的计算模型在预测潜在 MDR 方面表现出色。然而,数据采集过程中的错误可能会影响其有效性,导致节点表示不准确。为了应对这一挑战,我们引入了 GAM-MDR 模型,该模型将图自动编码器(GAE)与随机路径掩蔽技术相结合,以精确预测潜在的 MDR。GAM-MDR 模型的可靠性和有效性主要体现在两个方面。首先,它能有效提取 miRNA 药物网络中 miRNA 和药物节点的表征。其次,我们设计的随机路径掩蔽策略能有效重建网络中的关键路径,从而降低了噪声数据的不利影响。据我们所知,这是首次将随机路径屏蔽策略集成到 GAE 中来推断 MDR。我们的方法在公共数据集上进行了多次验证,并取得了令人满意的结果。我们相信,我们的模型能为 miRNA 治疗策略提供有价值的见解,并加深对 miRNA 调控机制的理解。我们的数据和代码可在 GitHub:https://github.com/ZZCrazy00/GAM-MDR 上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GAM-MDR: probing miRNA-drug resistance using a graph autoencoder based on random path masking.

MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信