Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa
{"title":"用于多特征亲本选择的贝叶斯优化 R 软件包。","authors":"Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa","doi":"10.1002/tpg2.20433","DOIUrl":null,"url":null,"abstract":"<p><p>Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package-an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback-Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions-EvalMPS, FastMPS, and ApproxMPS-catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian optimization R package for multitrait parental selection.\",\"authors\":\"Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa\",\"doi\":\"10.1002/tpg2.20433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package-an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback-Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions-EvalMPS, FastMPS, and ApproxMPS-catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20433\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20433","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
在传统的表型选择和基因组选择中,亲本的选择和交配至关重要。植物育种计划旨在提高作物的经济价值,同时考虑多个性状。当性状呈负相关和/或某些性状记录缺失时,选择就会变得更加复杂。为了解决这个问题,我们提出了一种使用多性状亲本选择(MPS)R软件包的多性状选择方法--这是一种用于遗传改良、精准育种和保护遗传学的高效工具。该软件包采用贝叶斯优化算法和三种损失函数(Kullback-Leibler、Energy Score 和 Multivariate Asymmetric Loss)来识别具有理想性状的候选亲本。该软件的功能包括三个主要功能--EvalMPS、FastMPS 和 ApproxMPS,可满足不同的数据可用性要求。通过所介绍的应用实例,MPS R 软件包证明了它在多性状基因组选择中的有效性,使育种者能够做出明智的决策,并在多个性状上取得优异的表现。
A Bayesian optimization R package for multitrait parental selection.
Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package-an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback-Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions-EvalMPS, FastMPS, and ApproxMPS-catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.