{"title":"依赖性下 Lq 正则化的相变和高阶分析。","authors":"Hanwen Huang, Peng Zeng, Qinglong Yang","doi":"10.1093/imaiai/iaae005","DOIUrl":null,"url":null,"abstract":"<p><p>We study the problem of estimating a [Formula: see text]-sparse signal [Formula: see text] from a set of noisy observations [Formula: see text] under the model [Formula: see text], where [Formula: see text] is the measurement matrix the row of which is drawn from distribution [Formula: see text]. We consider the class of [Formula: see text]-regularized least squares (LQLS) given by the formulation [Formula: see text], where [Formula: see text] [Formula: see text] denotes the [Formula: see text]-norm. In the setting [Formula: see text] with fixed [Formula: see text] and [Formula: see text], we derive the asymptotic risk of [Formula: see text] for arbitrary covariance matrix [Formula: see text] that generalizes the existing results for standard Gaussian design, i.e. [Formula: see text]. The results were derived from the non-rigorous replica method. We perform a higher-order analysis for LQLS in the small-error regime in which the first dominant term can be used to determine the phase transition behavior of LQLS. Our results show that the first dominant term does not depend on the covariance structure of [Formula: see text] in the cases [Formula: see text] and [Formula: see text] which indicates that the correlations among predictors only affect the phase transition curve in the case [Formula: see text] a.k.a. LASSO. To study the influence of the covariance structure of [Formula: see text] on the performance of LQLS in the cases [Formula: see text] and [Formula: see text], we derive the explicit formulas for the second dominant term in the expansion of the asymptotic risk in terms of small error. Extensive computational experiments confirm that our analytical predictions are consistent with numerical results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phase transition and higher order analysis of <i>L<sub>q</sub></i> regularization under dependence.\",\"authors\":\"Hanwen Huang, Peng Zeng, Qinglong Yang\",\"doi\":\"10.1093/imaiai/iaae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the problem of estimating a [Formula: see text]-sparse signal [Formula: see text] from a set of noisy observations [Formula: see text] under the model [Formula: see text], where [Formula: see text] is the measurement matrix the row of which is drawn from distribution [Formula: see text]. We consider the class of [Formula: see text]-regularized least squares (LQLS) given by the formulation [Formula: see text], where [Formula: see text] [Formula: see text] denotes the [Formula: see text]-norm. In the setting [Formula: see text] with fixed [Formula: see text] and [Formula: see text], we derive the asymptotic risk of [Formula: see text] for arbitrary covariance matrix [Formula: see text] that generalizes the existing results for standard Gaussian design, i.e. [Formula: see text]. The results were derived from the non-rigorous replica method. We perform a higher-order analysis for LQLS in the small-error regime in which the first dominant term can be used to determine the phase transition behavior of LQLS. Our results show that the first dominant term does not depend on the covariance structure of [Formula: see text] in the cases [Formula: see text] and [Formula: see text] which indicates that the correlations among predictors only affect the phase transition curve in the case [Formula: see text] a.k.a. LASSO. To study the influence of the covariance structure of [Formula: see text] on the performance of LQLS in the cases [Formula: see text] and [Formula: see text], we derive the explicit formulas for the second dominant term in the expansion of the asymptotic risk in terms of small error. Extensive computational experiments confirm that our analytical predictions are consistent with numerical results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaae005\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaae005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Phase transition and higher order analysis of Lq regularization under dependence.
We study the problem of estimating a [Formula: see text]-sparse signal [Formula: see text] from a set of noisy observations [Formula: see text] under the model [Formula: see text], where [Formula: see text] is the measurement matrix the row of which is drawn from distribution [Formula: see text]. We consider the class of [Formula: see text]-regularized least squares (LQLS) given by the formulation [Formula: see text], where [Formula: see text] [Formula: see text] denotes the [Formula: see text]-norm. In the setting [Formula: see text] with fixed [Formula: see text] and [Formula: see text], we derive the asymptotic risk of [Formula: see text] for arbitrary covariance matrix [Formula: see text] that generalizes the existing results for standard Gaussian design, i.e. [Formula: see text]. The results were derived from the non-rigorous replica method. We perform a higher-order analysis for LQLS in the small-error regime in which the first dominant term can be used to determine the phase transition behavior of LQLS. Our results show that the first dominant term does not depend on the covariance structure of [Formula: see text] in the cases [Formula: see text] and [Formula: see text] which indicates that the correlations among predictors only affect the phase transition curve in the case [Formula: see text] a.k.a. LASSO. To study the influence of the covariance structure of [Formula: see text] on the performance of LQLS in the cases [Formula: see text] and [Formula: see text], we derive the explicit formulas for the second dominant term in the expansion of the asymptotic risk in terms of small error. Extensive computational experiments confirm that our analytical predictions are consistent with numerical results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.