Emilia Ambrosini, Chiara Giangregorio, Eugenio Lomurno, Sara Moccia, Marios Milis, Christos Loizou, Domenico Azzolino, Matteo Cesari, Manuel Cid Gala, Carmen Galán de Isla, Jonathan Gomez-Raja, Nunzio Alberto Borghese, Matteo Matteucci, Simona Ferrante
{"title":"用于检测老年人认知功能衰退的自动语音分析:一项多语言研究。","authors":"Emilia Ambrosini, Chiara Giangregorio, Eugenio Lomurno, Sara Moccia, Marios Milis, Christos Loizou, Domenico Azzolino, Matteo Cesari, Manuel Cid Gala, Carmen Galán de Isla, Jonathan Gomez-Raja, Nunzio Alberto Borghese, Matteo Matteucci, Simona Ferrante","doi":"10.2196/50537","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rise in life expectancy is associated with an increase in long-term and gradual cognitive decline. Treatment effectiveness is enhanced at the early stage of the disease. Therefore, there is a need to find low-cost and ecological solutions for mass screening of community-dwelling older adults.</p><p><strong>Objective: </strong>This work aims to exploit automatic analysis of free speech to identify signs of cognitive function decline.</p><p><strong>Methods: </strong>A sample of 266 participants older than 65 years were recruited in Italy and Spain and were divided into 3 groups according to their Mini-Mental Status Examination (MMSE) scores. People were asked to tell a story and describe a picture, and voice recordings were used to extract high-level features on different time scales automatically. Based on these features, machine learning algorithms were trained to solve binary and multiclass classification problems by using both mono- and cross-lingual approaches. The algorithms were enriched using Shapley Additive Explanations for model explainability.</p><p><strong>Results: </strong>In the Italian data set, healthy participants (MMSE score≥27) were automatically discriminated from participants with mildly impaired cognitive function (20≤MMSE score≤26) and from those with moderate to severe impairment of cognitive function (11≤MMSE score≤19) with accuracy of 80% and 86%, respectively. Slightly lower performance was achieved in the Spanish and multilanguage data sets.</p><p><strong>Conclusions: </strong>This work proposes a transparent and unobtrusive assessment method, which might be included in a mobile app for large-scale monitoring of cognitive functionality in older adults. Voice is confirmed to be an important biomarker of cognitive decline due to its noninvasive and easily accessible nature.</p>","PeriodicalId":36245,"journal":{"name":"JMIR Aging","volume":" ","pages":"e50537"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091799/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic Spontaneous Speech Analysis for the Detection of Cognitive Functional Decline in Older Adults: Multilanguage Cross-Sectional Study.\",\"authors\":\"Emilia Ambrosini, Chiara Giangregorio, Eugenio Lomurno, Sara Moccia, Marios Milis, Christos Loizou, Domenico Azzolino, Matteo Cesari, Manuel Cid Gala, Carmen Galán de Isla, Jonathan Gomez-Raja, Nunzio Alberto Borghese, Matteo Matteucci, Simona Ferrante\",\"doi\":\"10.2196/50537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The rise in life expectancy is associated with an increase in long-term and gradual cognitive decline. Treatment effectiveness is enhanced at the early stage of the disease. Therefore, there is a need to find low-cost and ecological solutions for mass screening of community-dwelling older adults.</p><p><strong>Objective: </strong>This work aims to exploit automatic analysis of free speech to identify signs of cognitive function decline.</p><p><strong>Methods: </strong>A sample of 266 participants older than 65 years were recruited in Italy and Spain and were divided into 3 groups according to their Mini-Mental Status Examination (MMSE) scores. People were asked to tell a story and describe a picture, and voice recordings were used to extract high-level features on different time scales automatically. Based on these features, machine learning algorithms were trained to solve binary and multiclass classification problems by using both mono- and cross-lingual approaches. The algorithms were enriched using Shapley Additive Explanations for model explainability.</p><p><strong>Results: </strong>In the Italian data set, healthy participants (MMSE score≥27) were automatically discriminated from participants with mildly impaired cognitive function (20≤MMSE score≤26) and from those with moderate to severe impairment of cognitive function (11≤MMSE score≤19) with accuracy of 80% and 86%, respectively. Slightly lower performance was achieved in the Spanish and multilanguage data sets.</p><p><strong>Conclusions: </strong>This work proposes a transparent and unobtrusive assessment method, which might be included in a mobile app for large-scale monitoring of cognitive functionality in older adults. Voice is confirmed to be an important biomarker of cognitive decline due to its noninvasive and easily accessible nature.</p>\",\"PeriodicalId\":36245,\"journal\":{\"name\":\"JMIR Aging\",\"volume\":\" \",\"pages\":\"e50537\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/50537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/50537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Automatic Spontaneous Speech Analysis for the Detection of Cognitive Functional Decline in Older Adults: Multilanguage Cross-Sectional Study.
Background: The rise in life expectancy is associated with an increase in long-term and gradual cognitive decline. Treatment effectiveness is enhanced at the early stage of the disease. Therefore, there is a need to find low-cost and ecological solutions for mass screening of community-dwelling older adults.
Objective: This work aims to exploit automatic analysis of free speech to identify signs of cognitive function decline.
Methods: A sample of 266 participants older than 65 years were recruited in Italy and Spain and were divided into 3 groups according to their Mini-Mental Status Examination (MMSE) scores. People were asked to tell a story and describe a picture, and voice recordings were used to extract high-level features on different time scales automatically. Based on these features, machine learning algorithms were trained to solve binary and multiclass classification problems by using both mono- and cross-lingual approaches. The algorithms were enriched using Shapley Additive Explanations for model explainability.
Results: In the Italian data set, healthy participants (MMSE score≥27) were automatically discriminated from participants with mildly impaired cognitive function (20≤MMSE score≤26) and from those with moderate to severe impairment of cognitive function (11≤MMSE score≤19) with accuracy of 80% and 86%, respectively. Slightly lower performance was achieved in the Spanish and multilanguage data sets.
Conclusions: This work proposes a transparent and unobtrusive assessment method, which might be included in a mobile app for large-scale monitoring of cognitive functionality in older adults. Voice is confirmed to be an important biomarker of cognitive decline due to its noninvasive and easily accessible nature.