Milos Mihajlovic, Zenzi Rosseel, Elisabeth De Waele, Mathieu Vinken
{"title":"肠外营养相关肝损伤:临床意义和机理认识。","authors":"Milos Mihajlovic, Zenzi Rosseel, Elisabeth De Waele, Mathieu Vinken","doi":"10.1093/toxsci/kfae020","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal failure-associated liver disease (IFALD) is a relatively common complication in individuals receiving parenteral nutrition (PN). IFALD can be manifested as different types of liver injury, including steatosis, cholestasis, and fibrosis, and could result in liver failure in some cases. The onset and progression of IFALD are highly dependent on various patient and PN-related risk factors. Despite still being under investigation, several mechanisms have been proposed. Liver injury can originate due to caloric overload, nutrient deficiency, and toxicity, as well as phytosterol content, and omega-6 to omega-3 fatty acids ratio contained in lipid emulsions. Additional mechanisms include immature or defective bile acid metabolism, acute heart failure, infections, and sepsis exerting negative effects via Toll-like receptor 4 and nuclear factor κB inflammatory signaling. Furthermore, lack of enteral feeding, gut dysbiosis, and altered enterohepatic circulation that affect the farnesoid x receptor-fibroblast growth factor 19 axis can also contribute to IFALD. Various best practices can be adopted to minimize the risk of developing IFALD, such as prevention and management of central line infections and sepsis, preservation of intestine's length, a switch to oral and enteral feeding, cyclic PN, avoidance of overfeeding and soybean oil-based lipid formulations, and avoiding hepatotoxic substances. The present review thus provides a comprehensive overview of all relevant aspects inherent to IFALD. Further research focused on clinical observations, translational models, and advanced toxicological knowledge frameworks is needed to gain more insight into the molecular pathogenesis of hepatotoxicity, reduce IFALD incidence, and encourage the safe use of PN.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parenteral nutrition-associated liver injury: clinical relevance and mechanistic insights.\",\"authors\":\"Milos Mihajlovic, Zenzi Rosseel, Elisabeth De Waele, Mathieu Vinken\",\"doi\":\"10.1093/toxsci/kfae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intestinal failure-associated liver disease (IFALD) is a relatively common complication in individuals receiving parenteral nutrition (PN). IFALD can be manifested as different types of liver injury, including steatosis, cholestasis, and fibrosis, and could result in liver failure in some cases. The onset and progression of IFALD are highly dependent on various patient and PN-related risk factors. Despite still being under investigation, several mechanisms have been proposed. Liver injury can originate due to caloric overload, nutrient deficiency, and toxicity, as well as phytosterol content, and omega-6 to omega-3 fatty acids ratio contained in lipid emulsions. Additional mechanisms include immature or defective bile acid metabolism, acute heart failure, infections, and sepsis exerting negative effects via Toll-like receptor 4 and nuclear factor κB inflammatory signaling. Furthermore, lack of enteral feeding, gut dysbiosis, and altered enterohepatic circulation that affect the farnesoid x receptor-fibroblast growth factor 19 axis can also contribute to IFALD. Various best practices can be adopted to minimize the risk of developing IFALD, such as prevention and management of central line infections and sepsis, preservation of intestine's length, a switch to oral and enteral feeding, cyclic PN, avoidance of overfeeding and soybean oil-based lipid formulations, and avoiding hepatotoxic substances. The present review thus provides a comprehensive overview of all relevant aspects inherent to IFALD. Further research focused on clinical observations, translational models, and advanced toxicological knowledge frameworks is needed to gain more insight into the molecular pathogenesis of hepatotoxicity, reduce IFALD incidence, and encourage the safe use of PN.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae020\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae020","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Parenteral nutrition-associated liver injury: clinical relevance and mechanistic insights.
Intestinal failure-associated liver disease (IFALD) is a relatively common complication in individuals receiving parenteral nutrition (PN). IFALD can be manifested as different types of liver injury, including steatosis, cholestasis, and fibrosis, and could result in liver failure in some cases. The onset and progression of IFALD are highly dependent on various patient and PN-related risk factors. Despite still being under investigation, several mechanisms have been proposed. Liver injury can originate due to caloric overload, nutrient deficiency, and toxicity, as well as phytosterol content, and omega-6 to omega-3 fatty acids ratio contained in lipid emulsions. Additional mechanisms include immature or defective bile acid metabolism, acute heart failure, infections, and sepsis exerting negative effects via Toll-like receptor 4 and nuclear factor κB inflammatory signaling. Furthermore, lack of enteral feeding, gut dysbiosis, and altered enterohepatic circulation that affect the farnesoid x receptor-fibroblast growth factor 19 axis can also contribute to IFALD. Various best practices can be adopted to minimize the risk of developing IFALD, such as prevention and management of central line infections and sepsis, preservation of intestine's length, a switch to oral and enteral feeding, cyclic PN, avoidance of overfeeding and soybean oil-based lipid formulations, and avoiding hepatotoxic substances. The present review thus provides a comprehensive overview of all relevant aspects inherent to IFALD. Further research focused on clinical observations, translational models, and advanced toxicological knowledge frameworks is needed to gain more insight into the molecular pathogenesis of hepatotoxicity, reduce IFALD incidence, and encourage the safe use of PN.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.