Anne-Sofie Madsen Staples, Mette Poulsen, Kezia Ann Friis Præstmark, Thomas Sparre, Marie Sand Traberg
{"title":"皮下自动注射器的针盾尺寸和作用力对注射深度有显著影响。","authors":"Anne-Sofie Madsen Staples, Mette Poulsen, Kezia Ann Friis Præstmark, Thomas Sparre, Marie Sand Traberg","doi":"10.1177/19322968241231996","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study examines how shield-triggered autoinjectors (AIs), for subcutaneous drug delivery, affect injection depth. It focuses on shield size and applied force, parameters that could potentially lead to inadvertent intramuscular (IM) injections due to tissue compression.</p><p><strong>Method: </strong>A blinded ex-vivo study was performed to assess the impact of shield size and applied force on injection depth. Shields of 15, 20, and 30 mm diameters and forces from 2 to 10 N were investigated. The study involved 55 injections in three Landrace, Yorkshire, and Duroc (LYD) pigs, with injection depths measured with computed tomography (CT). An in-vivo study, involving 20 injections in three LYD pigs, controlled the findings, using fluoroscopy (FS) videos for depth measurement.</p><p><strong>Results: </strong>The CT study revealed that smaller shield sizes significantly increased injection depth. With a 15 mm diameter shield, 10 N applied force, and 5 mm needle protrusion, the injection depth exceeded the needle length by over 3 mm. Injection depth increased with higher applied forces until a plateau was reached around 8 N. Both applied force and size were significant factors for injection depth (analysis of variance [ANOVA], <i>P</i> < .05) in the CT study. The FS study confirmed the ex-vivo findings in an in-vivo setting.</p><p><strong>Conclusions: </strong>The study demonstrates that shield size has a greater impact on injection depth than the applied force. While conducted in porcine tissue, the study provides useful insights into the relative effects of shield size and applied force. Further investigations in humans are needed to confirm the predicted injection depths for AIs.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"1317-1325"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571378/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Needle Shield Size and Applied Force of Subcutaneous Autoinjectors Significantly Influence the Injection Depth.\",\"authors\":\"Anne-Sofie Madsen Staples, Mette Poulsen, Kezia Ann Friis Præstmark, Thomas Sparre, Marie Sand Traberg\",\"doi\":\"10.1177/19322968241231996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study examines how shield-triggered autoinjectors (AIs), for subcutaneous drug delivery, affect injection depth. It focuses on shield size and applied force, parameters that could potentially lead to inadvertent intramuscular (IM) injections due to tissue compression.</p><p><strong>Method: </strong>A blinded ex-vivo study was performed to assess the impact of shield size and applied force on injection depth. Shields of 15, 20, and 30 mm diameters and forces from 2 to 10 N were investigated. The study involved 55 injections in three Landrace, Yorkshire, and Duroc (LYD) pigs, with injection depths measured with computed tomography (CT). An in-vivo study, involving 20 injections in three LYD pigs, controlled the findings, using fluoroscopy (FS) videos for depth measurement.</p><p><strong>Results: </strong>The CT study revealed that smaller shield sizes significantly increased injection depth. With a 15 mm diameter shield, 10 N applied force, and 5 mm needle protrusion, the injection depth exceeded the needle length by over 3 mm. Injection depth increased with higher applied forces until a plateau was reached around 8 N. Both applied force and size were significant factors for injection depth (analysis of variance [ANOVA], <i>P</i> < .05) in the CT study. The FS study confirmed the ex-vivo findings in an in-vivo setting.</p><p><strong>Conclusions: </strong>The study demonstrates that shield size has a greater impact on injection depth than the applied force. While conducted in porcine tissue, the study provides useful insights into the relative effects of shield size and applied force. Further investigations in humans are needed to confirm the predicted injection depths for AIs.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"1317-1325\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241231996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241231996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
The Needle Shield Size and Applied Force of Subcutaneous Autoinjectors Significantly Influence the Injection Depth.
Background: This study examines how shield-triggered autoinjectors (AIs), for subcutaneous drug delivery, affect injection depth. It focuses on shield size and applied force, parameters that could potentially lead to inadvertent intramuscular (IM) injections due to tissue compression.
Method: A blinded ex-vivo study was performed to assess the impact of shield size and applied force on injection depth. Shields of 15, 20, and 30 mm diameters and forces from 2 to 10 N were investigated. The study involved 55 injections in three Landrace, Yorkshire, and Duroc (LYD) pigs, with injection depths measured with computed tomography (CT). An in-vivo study, involving 20 injections in three LYD pigs, controlled the findings, using fluoroscopy (FS) videos for depth measurement.
Results: The CT study revealed that smaller shield sizes significantly increased injection depth. With a 15 mm diameter shield, 10 N applied force, and 5 mm needle protrusion, the injection depth exceeded the needle length by over 3 mm. Injection depth increased with higher applied forces until a plateau was reached around 8 N. Both applied force and size were significant factors for injection depth (analysis of variance [ANOVA], P < .05) in the CT study. The FS study confirmed the ex-vivo findings in an in-vivo setting.
Conclusions: The study demonstrates that shield size has a greater impact on injection depth than the applied force. While conducted in porcine tissue, the study provides useful insights into the relative effects of shield size and applied force. Further investigations in humans are needed to confirm the predicted injection depths for AIs.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.