凯勒几何中的直径估算

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bin Guo, Duong H. Phong, Jian Song, Jacob Sturm
{"title":"凯勒几何中的直径估算","authors":"Bin Guo,&nbsp;Duong H. Phong,&nbsp;Jian Song,&nbsp;Jacob Sturm","doi":"10.1002/cpa.22196","DOIUrl":null,"url":null,"abstract":"<p>Diameter estimates for Kähler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> estimates for the Monge–Ampère equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, we solve the long-standing problem of uniform diameter bounds and Gromov–Hausdorff convergence of the Kähler–Ricci flow, for both finite-time and long-time solutions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diameter estimates in Kähler geometry\",\"authors\":\"Bin Guo,&nbsp;Duong H. Phong,&nbsp;Jian Song,&nbsp;Jacob Sturm\",\"doi\":\"10.1002/cpa.22196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diameter estimates for Kähler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$L^\\\\infty$</annotation>\\n </semantics></math> estimates for the Monge–Ampère equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, we solve the long-standing problem of uniform diameter bounds and Gromov–Hausdorff convergence of the Kähler–Ricci flow, for both finite-time and long-time solutions.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22196\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22196","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了凯勒度量的直径估计,它只需要一个熵限,而不需要里奇曲率的下限。证明建立在最近的蒙日-安培方程 L∞$L^\infty$ 估计的 PDE 技术基础上,关键的改进是允许严格大于一维的体积形式退化。因此,我们解决了Kähler-Ricci流的均匀直径边界和Gromov-Hausdorff收敛这个长期存在的有限时间和长期解的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diameter estimates in Kähler geometry

Diameter estimates for Kähler metrics are established which require only an entropy bound and no lower bound on the Ricci curvature. The proof builds on recent PDE techniques for L $L^\infty$ estimates for the Monge–Ampère equation, with a key improvement allowing degeneracies of the volume form of codimension strictly greater than one. As a consequence, we solve the long-standing problem of uniform diameter bounds and Gromov–Hausdorff convergence of the Kähler–Ricci flow, for both finite-time and long-time solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信