无$$K_{1,4}$$图的生成树,其可还原茎的叶子很少

Pub Date : 2024-02-19 DOI:10.1007/s10998-024-00572-7
Pham Hoang Ha, Le Dinh Nam, Ngoc Diep Pham
{"title":"无$$K_{1,4}$$图的生成树,其可还原茎的叶子很少","authors":"Pham Hoang Ha, Le Dinh Nam, Ngoc Diep Pham","doi":"10.1007/s10998-024-00572-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>T</i> be a tree; a vertex of degree 1 is a <i>leaf</i> of <i>T</i> and a vertex of degree at least 3 is a <i>branch vertex</i> of <i>T</i>. The <i>reducible stem</i> of <i>T</i> is the smallest subtree that contains all branch vertices of <i>T</i>. In this paper, we give some sharp sufficient conditions for <span>\\(K_{1,4}\\)</span>-free graphs to have a spanning tree whose reducible stem has few leaves.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning trees of $$K_{1,4}$$ -free graphs whose reducible stems have few leaves\",\"authors\":\"Pham Hoang Ha, Le Dinh Nam, Ngoc Diep Pham\",\"doi\":\"10.1007/s10998-024-00572-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>T</i> be a tree; a vertex of degree 1 is a <i>leaf</i> of <i>T</i> and a vertex of degree at least 3 is a <i>branch vertex</i> of <i>T</i>. The <i>reducible stem</i> of <i>T</i> is the smallest subtree that contains all branch vertices of <i>T</i>. In this paper, we give some sharp sufficient conditions for <span>\\\\(K_{1,4}\\\\)</span>-free graphs to have a spanning tree whose reducible stem has few leaves.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00572-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00572-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 T 是一棵树;度数为 1 的顶点是 T 的叶子,度数至少为 3 的顶点是 T 的分支顶点。T 的可还原干是包含 T 所有分支顶点的最小子树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spanning trees of $$K_{1,4}$$ -free graphs whose reducible stems have few leaves

分享
查看原文
Spanning trees of $$K_{1,4}$$ -free graphs whose reducible stems have few leaves

Let T be a tree; a vertex of degree 1 is a leaf of T and a vertex of degree at least 3 is a branch vertex of T. The reducible stem of T is the smallest subtree that contains all branch vertices of T. In this paper, we give some sharp sufficient conditions for \(K_{1,4}\)-free graphs to have a spanning tree whose reducible stem has few leaves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信