无$$K_{1,4}$$图的生成树,其可还原茎的叶子很少

IF 0.6 3区 数学 Q3 MATHEMATICS
Pham Hoang Ha, Le Dinh Nam, Ngoc Diep Pham
{"title":"无$$K_{1,4}$$图的生成树,其可还原茎的叶子很少","authors":"Pham Hoang Ha, Le Dinh Nam, Ngoc Diep Pham","doi":"10.1007/s10998-024-00572-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>T</i> be a tree; a vertex of degree 1 is a <i>leaf</i> of <i>T</i> and a vertex of degree at least 3 is a <i>branch vertex</i> of <i>T</i>. The <i>reducible stem</i> of <i>T</i> is the smallest subtree that contains all branch vertices of <i>T</i>. In this paper, we give some sharp sufficient conditions for <span>\\(K_{1,4}\\)</span>-free graphs to have a spanning tree whose reducible stem has few leaves.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"34 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning trees of $$K_{1,4}$$ -free graphs whose reducible stems have few leaves\",\"authors\":\"Pham Hoang Ha, Le Dinh Nam, Ngoc Diep Pham\",\"doi\":\"10.1007/s10998-024-00572-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>T</i> be a tree; a vertex of degree 1 is a <i>leaf</i> of <i>T</i> and a vertex of degree at least 3 is a <i>branch vertex</i> of <i>T</i>. The <i>reducible stem</i> of <i>T</i> is the smallest subtree that contains all branch vertices of <i>T</i>. In this paper, we give some sharp sufficient conditions for <span>\\\\(K_{1,4}\\\\)</span>-free graphs to have a spanning tree whose reducible stem has few leaves.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00572-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00572-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 T 是一棵树;度数为 1 的顶点是 T 的叶子,度数至少为 3 的顶点是 T 的分支顶点。T 的可还原干是包含 T 所有分支顶点的最小子树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spanning trees of $$K_{1,4}$$ -free graphs whose reducible stems have few leaves

Spanning trees of $$K_{1,4}$$ -free graphs whose reducible stems have few leaves

Let T be a tree; a vertex of degree 1 is a leaf of T and a vertex of degree at least 3 is a branch vertex of T. The reducible stem of T is the smallest subtree that contains all branch vertices of T. In this paper, we give some sharp sufficient conditions for \(K_{1,4}\)-free graphs to have a spanning tree whose reducible stem has few leaves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信