高维谐波映射的存在与特征值优化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mikhail Karpukhin, Daniel Stern
{"title":"高维谐波映射的存在与特征值优化","authors":"Mikhail Karpukhin, Daniel Stern","doi":"10.1007/s00222-024-01247-3","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of nonconstant harmonic maps of optimal regularity from an arbitrary closed manifold <span>\\((M^{n},g)\\)</span> of dimension <span>\\(n&gt;2\\)</span> to any closed, non-aspherical manifold <span>\\(N\\)</span> containing no stable minimal two-spheres. In particular, this gives the first general existence result for harmonic maps from higher-dimensional manifolds to a large class of positively curved targets. In the special case of the round spheres <span>\\(N=\\mathbb{S}^{k}\\)</span>, <span>\\(k\\geqslant 3\\)</span>, we obtain a distinguished family of nonconstant harmonic maps <span>\\(M\\to \\mathbb{S}^{k}\\)</span> of index at most <span>\\(k+1\\)</span>, with singular set of codimension at least 7 for <span>\\(k\\)</span> sufficiently large. Furthermore, if <span>\\(3\\leqslant n\\leqslant 5\\)</span>, we show that these smooth harmonic maps stabilize as <span>\\(k\\)</span> becomes large, and correspond to the solutions of an eigenvalue optimization problem on <span>\\(M\\)</span>, generalizing the conformal maximization of the first Laplace eigenvalue on surfaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of harmonic maps and eigenvalue optimization in higher dimensions\",\"authors\":\"Mikhail Karpukhin, Daniel Stern\",\"doi\":\"10.1007/s00222-024-01247-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of nonconstant harmonic maps of optimal regularity from an arbitrary closed manifold <span>\\\\((M^{n},g)\\\\)</span> of dimension <span>\\\\(n&gt;2\\\\)</span> to any closed, non-aspherical manifold <span>\\\\(N\\\\)</span> containing no stable minimal two-spheres. In particular, this gives the first general existence result for harmonic maps from higher-dimensional manifolds to a large class of positively curved targets. In the special case of the round spheres <span>\\\\(N=\\\\mathbb{S}^{k}\\\\)</span>, <span>\\\\(k\\\\geqslant 3\\\\)</span>, we obtain a distinguished family of nonconstant harmonic maps <span>\\\\(M\\\\to \\\\mathbb{S}^{k}\\\\)</span> of index at most <span>\\\\(k+1\\\\)</span>, with singular set of codimension at least 7 for <span>\\\\(k\\\\)</span> sufficiently large. Furthermore, if <span>\\\\(3\\\\leqslant n\\\\leqslant 5\\\\)</span>, we show that these smooth harmonic maps stabilize as <span>\\\\(k\\\\)</span> becomes large, and correspond to the solutions of an eigenvalue optimization problem on <span>\\\\(M\\\\)</span>, generalizing the conformal maximization of the first Laplace eigenvalue on surfaces.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01247-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01247-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了从(n>2)维的任意封闭流形((M^{n},g))到不包含稳定最小二球体的任意封闭非球形流形(N)的最佳正则性非恒定调和映射的存在性。特别是,这给出了从高维流形到一大类正弯曲目标的谐波映射的第一个一般存在性结果。在圆球\(N=\mathbb{S}^{k}\), \(k\geqslant3\)的特殊情况下,我们得到了一个指数最多为\(k+1\)的非恒定调和映射\(M\to \mathbb{S}^{k}\)的杰出族,对于\(k\)足够大,奇异集的编码维数至少为7。此外,如果\(3leqslant n\leqslant 5\), 我们证明这些平滑谐波映射随着\(k\)变大而稳定,并且对应于\(M\)上特征值优化问题的解,概括了曲面上第一个拉普拉斯特征值的共形最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of harmonic maps and eigenvalue optimization in higher dimensions

We prove the existence of nonconstant harmonic maps of optimal regularity from an arbitrary closed manifold \((M^{n},g)\) of dimension \(n>2\) to any closed, non-aspherical manifold \(N\) containing no stable minimal two-spheres. In particular, this gives the first general existence result for harmonic maps from higher-dimensional manifolds to a large class of positively curved targets. In the special case of the round spheres \(N=\mathbb{S}^{k}\), \(k\geqslant 3\), we obtain a distinguished family of nonconstant harmonic maps \(M\to \mathbb{S}^{k}\) of index at most \(k+1\), with singular set of codimension at least 7 for \(k\) sufficiently large. Furthermore, if \(3\leqslant n\leqslant 5\), we show that these smooth harmonic maps stabilize as \(k\) becomes large, and correspond to the solutions of an eigenvalue optimization problem on \(M\), generalizing the conformal maximization of the first Laplace eigenvalue on surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信