旋转球面模型中具有正能量的狄拉克自旋体散射态

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Zhi-Fu Gao, Ci-Xing Chen, Na Wang, Xin-Jun Zhao, Zhao-Jun Wang
{"title":"旋转球面模型中具有正能量的狄拉克自旋体散射态","authors":"Zhi-Fu Gao,&nbsp;Ci-Xing Chen,&nbsp;Na Wang,&nbsp;Xin-Jun Zhao,&nbsp;Zhao-Jun Wang","doi":"10.1002/asna.20240012","DOIUrl":null,"url":null,"abstract":"<p>There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ \\Big({\\phi}^{(0)},{\\chi}^{(0)},{\\phi}^{(1)},{\\chi}^{(1)},{\\phi}^{(2)} $$</annotation>\n </semantics></math>,<math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\chi}^{(2)},{\\phi}^{(3)} $$</annotation>\n </semantics></math>, and<math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\chi}^{(3)}\\Big) $$</annotation>\n </semantics></math> for the Dirac equation with positive-energy <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>=</mo>\n <mi>im</mi>\n </mrow>\n <annotation>$$ E= im $$</annotation>\n </semantics></math>, and establishes the relationship between the differential scattering cross section <math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>φ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ {\\sigma}_i\\left(p,\\theta, \\varphi \\right) $$</annotation>\n </semantics></math> and the stellar density <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>. It is found that: (1) For the eight scattering states, their average scattering cross-sections <math>\n <semantics>\n <mrow>\n <mover>\n <msub>\n <mi>σ</mi>\n <mi>i</mi>\n </msub>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma_i} $$</annotation>\n </semantics></math> are proportional to <math>\n <semantics>\n <mrow>\n <msup>\n <mi>μ</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\mu}^2 $$</annotation>\n </semantics></math>, and depend on the star's radius, and the higher the stellar density <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>, the greater the sensitivity of <math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mi>σ</mi>\n <mi>i</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma i} $$</annotation>\n </semantics></math> to the change of <math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>; (2) For the four scattering states <math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>i</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ {\\chi}^{(i)},i=0,1,2,3 $$</annotation>\n </semantics></math>, their average scattering amplitudes <math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\overline{f}\\left(p,\\theta \\right) $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>σ</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ \\overline{\\sigma}\\left(p,\\theta \\right) $$</annotation>\n </semantics></math> depend on the mass <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> of the particles; while for the other four scattering states <math>\n <semantics>\n <mrow>\n <msup>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <mi>i</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\phi}^{(i)} $$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ i=0,1,2,3 $$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mover>\n <mi>f</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{f} $$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>σ</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{\\sigma} $$</annotation>\n </semantics></math> are independent of <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math>. This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 2-3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac spinor scattering states with positive-energy in rotating spheroid models\",\"authors\":\"Zhi-Fu Gao,&nbsp;Ci-Xing Chen,&nbsp;Na Wang,&nbsp;Xin-Jun Zhao,&nbsp;Zhao-Jun Wang\",\"doi\":\"10.1002/asna.20240012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ \\\\Big({\\\\phi}^{(0)},{\\\\chi}^{(0)},{\\\\phi}^{(1)},{\\\\chi}^{(1)},{\\\\phi}^{(2)} $$</annotation>\\n </semantics></math>,<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\chi}^{(2)},{\\\\phi}^{(3)} $$</annotation>\\n </semantics></math>, and<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {\\\\chi}^{(3)}\\\\Big) $$</annotation>\\n </semantics></math> for the Dirac equation with positive-energy <math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>=</mo>\\n <mi>im</mi>\\n </mrow>\\n <annotation>$$ E= im $$</annotation>\\n </semantics></math>, and establishes the relationship between the differential scattering cross section <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>σ</mi>\\n <mi>i</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>,</mo>\\n <mi>φ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ {\\\\sigma}_i\\\\left(p,\\\\theta, \\\\varphi \\\\right) $$</annotation>\\n </semantics></math> and the stellar density <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>. It is found that: (1) For the eight scattering states, their average scattering cross-sections <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <msub>\\n <mi>σ</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma_i} $$</annotation>\\n </semantics></math> are proportional to <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>μ</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mu}^2 $$</annotation>\\n </semantics></math>, and depend on the star's radius, and the higher the stellar density <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>, the greater the sensitivity of <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mrow>\\n <mi>σ</mi>\\n <mi>i</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma i} $$</annotation>\\n </semantics></math> to the change of <math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>; (2) For the four scattering states <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>i</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$$ {\\\\chi}^{(i)},i=0,1,2,3 $$</annotation>\\n </semantics></math>, their average scattering amplitudes <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ \\\\overline{f}\\\\left(p,\\\\theta \\\\right) $$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>σ</mi>\\n <mo>‾</mo>\\n </mover>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma}\\\\left(p,\\\\theta \\\\right) $$</annotation>\\n </semantics></math> depend on the mass <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math> of the particles; while for the other four scattering states <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ϕ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>i</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\phi}^{(i)} $$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$$ i=0,1,2,3 $$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>f</mi>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{f} $$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>σ</mi>\\n <mo>‾</mo>\\n </mover>\\n </mrow>\\n <annotation>$$ \\\\overline{\\\\sigma} $$</annotation>\\n </semantics></math> are independent of <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math>. This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 2-3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

宇宙中有许多旋转球体,自牛顿时代以来,许多天文学家和物理学家都用理论方法来研究恒星引力的特性。本文推导了八种散射态(ϕ(0),χ(0),ϕ(1),χ(1),ϕ(2)$$ \Big({\phi}^{(0)}、{\chi}^{(0)},{\phi}^{(1)},{\chi}^{(1)},{\phi}^{(2)} $$,χ(2),ϕ(3)$$ {\chi}^{(2)},{\phi}^{(3)} $$,andχ(3))$$ {\chi}^{(3)}\Big) $$ 为正能量 E=im$$ E= im $$ 的狄拉克方程,并建立了微分散射截面 σi(p,θ,φ)$$ {\sigma}_i\left(p,\theta, \varphi \right) $$ 与恒星密度 μ$$ \mu $$ 之间的关系。结果发现(1) 对于八种散射态,它们的平均散射截面 σi‾$$ \overline\{sigma_i} $$ 与 μ$$ {\mu}^2 $$ 成正比、恒星密度 μ$$ \mu $$ 越高,σi‾$$ \overline{sigma i} $$ 对 μ$$ \mu $$ 变化的敏感性就越大;(2) 对于四个散射态 χ(i),i=0,1,2,3$$ {\chi}^{(i)},i=0,1,2,3 $$,其平均散射振幅 f‾(p、θ)$$ \overline{f}\left(p,\theta \right) $$ 和 σ‾(p,θ)$$ \overline{sigma}\left(p,\theta \right) $$ 取决于粒子的质量 m$$ m$ ;而对于其他四种散射态 j(i)$$ {\phi}^{(i)} $$, i=0,1,2,3$$ i=0,1,2,3 $$, 则 f‾$ \overline{f} $$ 和 σ‾$ \overline{sigma} $$ 与 m$$ m$ 无关。该研究将恒星的引力特性与散射截面联系起来,创建了一种研究引力特性的新方法,有助于揭示旋转椭球体恒星引力的奥秘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirac spinor scattering states with positive-energy in rotating spheroid models

There are many rotating spheroids in the universe, and many astronomers and physicists have used theoretical methods to study the characteristics of stellar gravity since Newton's time. This paper derives the solutions of eight scattering states ( ϕ ( 0 ) , χ ( 0 ) , ϕ ( 1 ) , χ ( 1 ) , ϕ ( 2 ) $$ \Big({\phi}^{(0)},{\chi}^{(0)},{\phi}^{(1)},{\chi}^{(1)},{\phi}^{(2)} $$ , χ ( 2 ) , ϕ ( 3 ) $$ {\chi}^{(2)},{\phi}^{(3)} $$ , and χ ( 3 ) ) $$ {\chi}^{(3)}\Big) $$ for the Dirac equation with positive-energy E = im $$ E= im $$ , and establishes the relationship between the differential scattering cross section σ i ( p , θ , φ ) $$ {\sigma}_i\left(p,\theta, \varphi \right) $$ and the stellar density μ $$ \mu $$ . It is found that: (1) For the eight scattering states, their average scattering cross-sections σ i $$ \overline{\sigma_i} $$ are proportional to μ 2 $$ {\mu}^2 $$ , and depend on the star's radius, and the higher the stellar density μ $$ \mu $$ , the greater the sensitivity of σ i $$ \overline{\sigma i} $$ to the change of μ $$ \mu $$ ; (2) For the four scattering states χ ( i ) , i = 0 , 1 , 2 , 3 $$ {\chi}^{(i)},i=0,1,2,3 $$ , their average scattering amplitudes f ( p , θ ) $$ \overline{f}\left(p,\theta \right) $$ and σ ( p , θ ) $$ \overline{\sigma}\left(p,\theta \right) $$ depend on the mass m $$ m $$ of the particles; while for the other four scattering states ϕ ( i ) $$ {\phi}^{(i)} $$ , i = 0 , 1 , 2 , 3 $$ i=0,1,2,3 $$ , then f $$ \overline{f} $$ and σ $$ \overline{\sigma} $$ are independent of m $$ m $$ . This study links the gravitational characteristics of stars with the scattering cross section, creating a new method for studying the gravitational characteristics, which helps to reveal the mystery of the gravity of rotating ellipsoidal stars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信