新型吲哚啉偶氮分散染料的研究:合成、DFT 模拟以及在 PET 和 PA 织物上的染色性能

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Xiyu Song, Mingda Li, Chuang Dai, Jingyi Li, Yu Wang, Aiqin Hou and Hongfei Qian
{"title":"新型吲哚啉偶氮分散染料的研究:合成、DFT 模拟以及在 PET 和 PA 织物上的染色性能","authors":"Xiyu Song, Mingda Li, Chuang Dai, Jingyi Li, Yu Wang, Aiqin Hou and Hongfei Qian","doi":"10.1039/D3ME00187C","DOIUrl":null,"url":null,"abstract":"<p >The feasibilities of the chemical reactions of indoline were analyzed with density functional theory (DFT) simulation. A series of azo disperse dyes using indoline as a coupling component were synthesized, namely D1–D6. The synthesized dyes were investigated by UV-visible, FT-IR, <small><sup>1</sup></small>H-NMR and MS spectroscopies. DFT simulation was applied to analyze the spectrometric properties of designed dyes. The dyeing of polyethylene terephthalate (PET) and nylon (PA) fabrics were assessed and compared. The synthesized indoline azo disperse dyes exhibited a yellow to red hue on the PET and PA fabrics. Deep shades were achieved with increased dye concentrations for D1 and D2 for the PET and PA fabrics. Excellent rubbing fastness and good sublimation fastness were achieved. Interrelations between dye structures and dyeing performance on the PET and PA fabrics were investigated using DFT calculations.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 5","pages":" 500-506"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of novel indoline azo disperse dyes: synthesis, DFT simulation, and dyeing performance on PET and PA fabrics†\",\"authors\":\"Xiyu Song, Mingda Li, Chuang Dai, Jingyi Li, Yu Wang, Aiqin Hou and Hongfei Qian\",\"doi\":\"10.1039/D3ME00187C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The feasibilities of the chemical reactions of indoline were analyzed with density functional theory (DFT) simulation. A series of azo disperse dyes using indoline as a coupling component were synthesized, namely D1–D6. The synthesized dyes were investigated by UV-visible, FT-IR, <small><sup>1</sup></small>H-NMR and MS spectroscopies. DFT simulation was applied to analyze the spectrometric properties of designed dyes. The dyeing of polyethylene terephthalate (PET) and nylon (PA) fabrics were assessed and compared. The synthesized indoline azo disperse dyes exhibited a yellow to red hue on the PET and PA fabrics. Deep shades were achieved with increased dye concentrations for D1 and D2 for the PET and PA fabrics. Excellent rubbing fastness and good sublimation fastness were achieved. Interrelations between dye structures and dyeing performance on the PET and PA fabrics were investigated using DFT calculations.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 5\",\"pages\":\" 500-506\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00187c\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d3me00187c","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论(DFT)模拟分析了吲哚啉化学反应的可行性。以吲哚啉为偶联组分合成了一系列偶氮分散染料,即 D1-D6。对合成的染料进行了紫外-可见光、傅立叶变换红外光谱、1H-核磁共振和质谱分析。应用 DFT 模拟分析了所设计染料的光谱特性。对聚对苯二甲酸乙二酯(PET)和尼龙(PA)织物的染色进行了评估和比较。合成的吲哚啉偶氮分散染料在 PET 和 PA 织物上呈现出黄色至红色的色调。在 PET 和 PA 织物上,随着染料浓度 D1 和 D2 的增加,可获得深色调。摩擦牢度和升华牢度极佳。利用 DFT 计算研究了染料结构与 PET 和 PA 织物染色性能之间的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of novel indoline azo disperse dyes: synthesis, DFT simulation, and dyeing performance on PET and PA fabrics†

Investigation of novel indoline azo disperse dyes: synthesis, DFT simulation, and dyeing performance on PET and PA fabrics†

The feasibilities of the chemical reactions of indoline were analyzed with density functional theory (DFT) simulation. A series of azo disperse dyes using indoline as a coupling component were synthesized, namely D1–D6. The synthesized dyes were investigated by UV-visible, FT-IR, 1H-NMR and MS spectroscopies. DFT simulation was applied to analyze the spectrometric properties of designed dyes. The dyeing of polyethylene terephthalate (PET) and nylon (PA) fabrics were assessed and compared. The synthesized indoline azo disperse dyes exhibited a yellow to red hue on the PET and PA fabrics. Deep shades were achieved with increased dye concentrations for D1 and D2 for the PET and PA fabrics. Excellent rubbing fastness and good sublimation fastness were achieved. Interrelations between dye structures and dyeing performance on the PET and PA fabrics were investigated using DFT calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信