{"title":"非线性约束优化的投影搜索内点法","authors":"Philip E. Gill, Minxin Zhang","doi":"10.1007/s10589-023-00549-1","DOIUrl":null,"url":null,"abstract":"<p>This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A projected-search interior-point method for nonlinearly constrained optimization\",\"authors\":\"Philip E. Gill, Minxin Zhang\",\"doi\":\"10.1007/s10589-023-00549-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00549-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00549-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A projected-search interior-point method for nonlinearly constrained optimization
This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.