非线性约束优化的投影搜索内点法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Philip E. Gill, Minxin Zhang
{"title":"非线性约束优化的投影搜索内点法","authors":"Philip E. Gill, Minxin Zhang","doi":"10.1007/s10589-023-00549-1","DOIUrl":null,"url":null,"abstract":"<p>This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A projected-search interior-point method for nonlinearly constrained optimization\",\"authors\":\"Philip E. Gill, Minxin Zhang\",\"doi\":\"10.1007/s10589-023-00549-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-023-00549-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00549-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及一种用于约束优化的新内点法的制定和分析,该方法将移位初等-双重内点法与用于约束优化的投影搜索法相结合。该方法涉及计算初等-双重罚阻函数的近似牛顿方向,其中包含初等变量和双重变量的移动。对偶变量的移动使得该方法可以安全地从一个良好的近似解 "热启动",并避免了相关路径跟随方程出现非常大的解的可能性。近似牛顿方向与一种新的投影搜索线性搜索算法结合使用,该算法采用灵活的非单调准阿米约线性搜索来最小化每个罚垒函数。文中给出了大量约束优化问题的数值结果。为了便于比较,还给出了两种不使用投影的原始双内点法的结果。第一种是同时移动原始变量和对偶变量的方法。第二种方法只涉及原始变量的移动。结果表明,同时使用主变量和对偶变量移动以及投影的方法更稳健,所需的迭代次数也大大减少。特别是,必须计算搜索方向的次数大大减少。一组二次编程测试问题的结果表明,该方法特别适合解决非线性优化的顺序二次编程方法中的二次编程子问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A projected-search interior-point method for nonlinearly constrained optimization

A projected-search interior-point method for nonlinearly constrained optimization

This paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信