简单无性变上的线性独立性

Pub Date : 2024-02-22 DOI:10.1007/s10998-024-00573-6
Duc Hiep Pham
{"title":"简单无性变上的线性独立性","authors":"Duc Hiep Pham","doi":"10.1007/s10998-024-00573-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish new results on complex and <i>p</i>-adic linear independence on general simple abelian varieties defined over the field of algebraic numbers <span>\\(\\overline{{\\mathbb {Q}}}\\)</span>. In particular, these results extend some previous results on that concerning elliptic curves and simple abelian varieties with complex multiplication defined over <span>\\(\\overline{{\\mathbb {Q}}}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear independence on simple abelian varieties\",\"authors\":\"Duc Hiep Pham\",\"doi\":\"10.1007/s10998-024-00573-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish new results on complex and <i>p</i>-adic linear independence on general simple abelian varieties defined over the field of algebraic numbers <span>\\\\(\\\\overline{{\\\\mathbb {Q}}}\\\\)</span>. In particular, these results extend some previous results on that concerning elliptic curves and simple abelian varieties with complex multiplication defined over <span>\\\\(\\\\overline{{\\\\mathbb {Q}}}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00573-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00573-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了定义在代数数域 \(\overline{\{mathbb {Q}}\)上的一般简单长方体上的复数和 p-adic 线性独立性的新结果。)特别是,这些结果扩展了之前关于椭圆曲线和定义在 \(\overline{\{mathbb {Q}}\) 上的具有复乘法的简单无常变项的一些结果。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Linear independence on simple abelian varieties

In this paper, we establish new results on complex and p-adic linear independence on general simple abelian varieties defined over the field of algebraic numbers \(\overline{{\mathbb {Q}}}\). In particular, these results extend some previous results on that concerning elliptic curves and simple abelian varieties with complex multiplication defined over \(\overline{{\mathbb {Q}}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信