线性规划问题的不可行内部点弧线搜索法与涅斯捷罗夫重启策略

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Einosuke Iida, Makoto Yamashita
{"title":"线性规划问题的不可行内部点弧线搜索法与涅斯捷罗夫重启策略","authors":"Einosuke Iida, Makoto Yamashita","doi":"10.1007/s10589-024-00561-z","DOIUrl":null,"url":null,"abstract":"<p>An arc-search interior-point method is a type of interior-point method that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and the computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov’s restarting strategy which is a well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the proposed method converges to an optimal solution and that it is a polynomial-time method. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and the computational time compared to existing interior-point methods due to the momentum term.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An infeasible interior-point arc-search method with Nesterov’s restarting strategy for linear programming problems\",\"authors\":\"Einosuke Iida, Makoto Yamashita\",\"doi\":\"10.1007/s10589-024-00561-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An arc-search interior-point method is a type of interior-point method that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and the computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov’s restarting strategy which is a well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the proposed method converges to an optimal solution and that it is a polynomial-time method. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and the computational time compared to existing interior-point methods due to the momentum term.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00561-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00561-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

弧搜索内点法是一种用椭圆弧逼近中心路径的内点法,通常可以减少迭代次数。在本研究中,为了进一步减少线性规划问题的迭代次数和计算时间,我们提出了两种弧搜索内点法,并采用了著名的加速带动量项梯度法的涅斯捷罗夫重启策略。第一种方法在邻域内产生一系列迭代,我们证明了所提出的方法能收敛到最优解,并且是一种多项式时间方法。第二种方法结合了 Mehrotra 型内点法的概念,以提高数值性能。数值实验证明,与现有的内点法相比,第二种方法由于动量项的存在,减少了迭代次数和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An infeasible interior-point arc-search method with Nesterov’s restarting strategy for linear programming problems

An infeasible interior-point arc-search method with Nesterov’s restarting strategy for linear programming problems

An arc-search interior-point method is a type of interior-point method that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and the computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov’s restarting strategy which is a well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the proposed method converges to an optimal solution and that it is a polynomial-time method. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and the computational time compared to existing interior-point methods due to the momentum term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信