{"title":"前向稳定性和模型路径选择","authors":"Nicholas Kissel, Lucas Mentch","doi":"10.1007/s11222-024-10395-8","DOIUrl":null,"url":null,"abstract":"<p>Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different. This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for others with minimal loss.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward stability and model path selection\",\"authors\":\"Nicholas Kissel, Lucas Mentch\",\"doi\":\"10.1007/s11222-024-10395-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different. This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for others with minimal loss.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10395-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10395-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Most scientific publications follow the familiar recipe of (i) obtain data, (ii) fit a model, and (iii) comment on the scientific relevance of the effects of particular covariates in that model. This approach, however, ignores the fact that there may exist a multitude of similarly-accurate models in which the implied effects of individual covariates may be vastly different. This problem of finding an entire collection of plausible models has also received relatively little attention in the statistics community, with nearly all of the proposed methodologies being narrowly tailored to a particular model class and/or requiring an exhaustive search over all possible models, making them largely infeasible in the current big data era. This work develops the idea of forward stability and proposes a novel, computationally-efficient approach to finding collections of accurate models we refer to as model path selection (MPS). MPS builds up a plausible model collection via a forward selection approach and is entirely agnostic to the model class and loss function employed. The resulting model collection can be displayed in a simple and intuitive graphical fashion, easily allowing practitioners to visualize whether some covariates can be swapped for others with minimal loss.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.