{"title":"用于推理的 VAR 模型的岭正则化估计","authors":"Giovanni Ballarin","doi":"10.1111/jtsa.12737","DOIUrl":null,"url":null,"abstract":"Ridge regression is a popular method for dense least squares regularization. In this article, ridge regression is studied in the context of VAR model estimation and inference. The implications of anisotropic penalization are discussed, and a comparison is made with Bayesian ridge-type estimators. The asymptotic distribution and the properties of cross-validation techniques are analyzed. Finally, the estimation of impulse response functions is evaluated with Monte Carlo simulations and ridge regression is compared with a number of similar and competing methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ridge regularized estimation of VAR models for inference\",\"authors\":\"Giovanni Ballarin\",\"doi\":\"10.1111/jtsa.12737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ridge regression is a popular method for dense least squares regularization. In this article, ridge regression is studied in the context of VAR model estimation and inference. The implications of anisotropic penalization are discussed, and a comparison is made with Bayesian ridge-type estimators. The asymptotic distribution and the properties of cross-validation techniques are analyzed. Finally, the estimation of impulse response functions is evaluated with Monte Carlo simulations and ridge regression is compared with a number of similar and competing methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12737\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12737","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
脊回归是一种常用的密集最小二乘法正则化方法。本文结合 VAR 模型的估计和推断对岭回归进行了研究。文章讨论了各向异性惩罚的影响,并与贝叶斯脊型估计器进行了比较。分析了交叉验证技术的渐近分布和特性。最后,通过蒙特卡罗模拟对脉冲响应函数的估计进行了评估,并将脊回归与一些类似的竞争方法进行了比较。
Ridge regularized estimation of VAR models for inference
Ridge regression is a popular method for dense least squares regularization. In this article, ridge regression is studied in the context of VAR model estimation and inference. The implications of anisotropic penalization are discussed, and a comparison is made with Bayesian ridge-type estimators. The asymptotic distribution and the properties of cross-validation techniques are analyzed. Finally, the estimation of impulse response functions is evaluated with Monte Carlo simulations and ridge regression is compared with a number of similar and competing methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.