论普遍性极限的收敛率

Pub Date : 2024-02-21 DOI:10.1007/s00020-024-02757-8
Roman Bessonov
{"title":"论普遍性极限的收敛率","authors":"Roman Bessonov","doi":"10.1007/s00020-024-02757-8","DOIUrl":null,"url":null,"abstract":"<p>Given a probability measure <span>\\(\\mu \\)</span> on the unit circle <span>\\({\\mathbb {T}}\\)</span>, consider the reproducing kernel <span>\\(k_{\\mu ,n}(z_1, z_2)\\)</span> in the space of polynomials of degree at most <span>\\(n-1\\)</span> with the <span>\\(L^2(\\mu )\\)</span>–inner product. Let <span>\\(u, v \\in {\\mathbb {C}}\\)</span>. It is known that under mild assumptions on <span>\\(\\mu \\)</span> near <span>\\(\\zeta \\in \\mathbb {T}\\)</span>, the ratio <span>\\(k_{\\mu ,n}(\\zeta e^{u/n}, \\zeta e^{v/n})/k_{\\mu ,n}(\\zeta , \\zeta )\\)</span> converges to a universal limit <i>S</i>(<i>u</i>, <i>v</i>) as <span>\\(n \\rightarrow \\infty \\)</span>. We give an estimate for the rate of this convergence for measures <span>\\(\\mu \\)</span> with finite logarithmic integral.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Rate of Convergence for Universality Limits\",\"authors\":\"Roman Bessonov\",\"doi\":\"10.1007/s00020-024-02757-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a probability measure <span>\\\\(\\\\mu \\\\)</span> on the unit circle <span>\\\\({\\\\mathbb {T}}\\\\)</span>, consider the reproducing kernel <span>\\\\(k_{\\\\mu ,n}(z_1, z_2)\\\\)</span> in the space of polynomials of degree at most <span>\\\\(n-1\\\\)</span> with the <span>\\\\(L^2(\\\\mu )\\\\)</span>–inner product. Let <span>\\\\(u, v \\\\in {\\\\mathbb {C}}\\\\)</span>. It is known that under mild assumptions on <span>\\\\(\\\\mu \\\\)</span> near <span>\\\\(\\\\zeta \\\\in \\\\mathbb {T}\\\\)</span>, the ratio <span>\\\\(k_{\\\\mu ,n}(\\\\zeta e^{u/n}, \\\\zeta e^{v/n})/k_{\\\\mu ,n}(\\\\zeta , \\\\zeta )\\\\)</span> converges to a universal limit <i>S</i>(<i>u</i>, <i>v</i>) as <span>\\\\(n \\\\rightarrow \\\\infty \\\\)</span>. We give an estimate for the rate of this convergence for measures <span>\\\\(\\\\mu \\\\)</span> with finite logarithmic integral.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02757-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02757-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定单位圆\({\mathbb {T}}\)上的概率度量\(\mu \),考虑阶数最多为\(n-1)的多项式空间中具有\(L^2(\mu )\)-内积的再现核\(k_{\mu ,n}(z_1, z_2)\)。让 \(u, v 在 {\mathbb {C}}\).众所周知,在靠近 \(\zeta \in \mathbb {T}\) 的 \(\mu \) 的温和假设下,比率 \(k_\{mu ,n}(\zeta e^{u/n}、\zeta e^{v/n})/k_{\mu ,n}(\zeta , \zeta )\) 收敛到一个普遍的极限 S(u, v) as \(n \rightarrow \infty \)。对于具有有限对数积分的度量 \(\mu \),我们给出了这种收敛速率的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Rate of Convergence for Universality Limits

分享
查看原文
On Rate of Convergence for Universality Limits

Given a probability measure \(\mu \) on the unit circle \({\mathbb {T}}\), consider the reproducing kernel \(k_{\mu ,n}(z_1, z_2)\) in the space of polynomials of degree at most \(n-1\) with the \(L^2(\mu )\)–inner product. Let \(u, v \in {\mathbb {C}}\). It is known that under mild assumptions on \(\mu \) near \(\zeta \in \mathbb {T}\), the ratio \(k_{\mu ,n}(\zeta e^{u/n}, \zeta e^{v/n})/k_{\mu ,n}(\zeta , \zeta )\) converges to a universal limit S(uv) as \(n \rightarrow \infty \). We give an estimate for the rate of this convergence for measures \(\mu \) with finite logarithmic integral.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信