Murugesan S, M. Mahasree, F. Kavin, N. Bharathiraja
{"title":"利用机器学习技术进行性能优化的太阳能预测","authors":"Murugesan S, M. Mahasree, F. Kavin, N. Bharathiraja","doi":"10.1080/15325008.2024.2316245","DOIUrl":null,"url":null,"abstract":"The objective of this paper is proposed a forecasting technique system constitute the data integrity phase using Machine Learning (ML) techniques and post-processing output optimization to improve ...","PeriodicalId":50548,"journal":{"name":"Electric Power Components and Systems","volume":"140 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Energy Forecasting With Performance Optimization Using Machine Learning Techniques\",\"authors\":\"Murugesan S, M. Mahasree, F. Kavin, N. Bharathiraja\",\"doi\":\"10.1080/15325008.2024.2316245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is proposed a forecasting technique system constitute the data integrity phase using Machine Learning (ML) techniques and post-processing output optimization to improve ...\",\"PeriodicalId\":50548,\"journal\":{\"name\":\"Electric Power Components and Systems\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Components and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15325008.2024.2316245\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Components and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15325008.2024.2316245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Solar Energy Forecasting With Performance Optimization Using Machine Learning Techniques
The objective of this paper is proposed a forecasting technique system constitute the data integrity phase using Machine Learning (ML) techniques and post-processing output optimization to improve ...
期刊介绍:
Electric Power Components and Systems publishes original theoretical and applied papers of permanent reference value related to the broad field of electric machines and drives, power electronics converters, electromechanical devices, electrical equipment, renewable and sustainable electric energy applications, and power systems.
Specific topics covered include:
-Electric machines-
Solid-state control of electric machine drives-
Power electronics converters-
Electromagnetic fields in energy converters-
Renewable energy generators and systems-
Power system planning-
Transmission and distribution-
Power system protection-
Dispatching and scheduling-
Stability, reliability, and security-
Renewable energy integration-
Smart-grid and micro-grid technologies.