有边缘噪声的度量图上的反应扩散方程

IF 0.6 3区 数学 Q3 MATHEMATICS
E. Sikolya
{"title":"有边缘噪声的度量图上的反应扩散方程","authors":"E. Sikolya","doi":"10.1007/s10476-024-00006-z","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate stochastic reaction-diffusion equations on finite metric graphs. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given. The vertex conditions are the standard continuity and generalized, non-local Neumann-Kirchhoff-type law in each vertex. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. The model is a generalization of the problem in \n[14] where polynomials with much more restrictive assumptions are considered and no first order differential operator is involved. We utilize the semigroup approach from \n[15] to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph. </p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-024-00006-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Reaction-diffusion equations on metric graphs with edge noise\",\"authors\":\"E. Sikolya\",\"doi\":\"10.1007/s10476-024-00006-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate stochastic reaction-diffusion equations on finite metric graphs. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given. The vertex conditions are the standard continuity and generalized, non-local Neumann-Kirchhoff-type law in each vertex. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. The model is a generalization of the problem in \\n[14] where polynomials with much more restrictive assumptions are considered and no first order differential operator is involved. We utilize the semigroup approach from \\n[15] to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph. </p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-024-00006-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00006-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00006-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究有限度量图上的随机反应扩散方程。我们给出了图中每条边的乘法圆柱高斯噪声驱动的反应扩散方程。顶点条件是每个顶点的标准连续性和广义非局部 Neumann-Kirchhoff 型定律。假设每条边上的反应项是奇数度多项式,每条边上的多项式不一定相同,可能有随机系数和负前导项。该模型是对 [14] 中问题的概括,在 [14] 中,多项式的假设条件要严格得多,而且不涉及一阶微分算子。我们利用 [15] 中的半群方法,在图上的连续函数空间中获得具有样本路径的解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reaction-diffusion equations on metric graphs with edge noise

We investigate stochastic reaction-diffusion equations on finite metric graphs. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given. The vertex conditions are the standard continuity and generalized, non-local Neumann-Kirchhoff-type law in each vertex. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. The model is a generalization of the problem in [14] where polynomials with much more restrictive assumptions are considered and no first order differential operator is involved. We utilize the semigroup approach from [15] to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信