加权团队可定义性的参数化复杂性

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Juha Kontinen, Yasir Mahmood, Arne Meier, Heribert Vollmer
{"title":"加权团队可定义性的参数化复杂性","authors":"Juha Kontinen, Yasir Mahmood, Arne Meier, Heribert Vollmer","doi":"10.1017/s0960129524000033","DOIUrl":null,"url":null,"abstract":"In this article, we study the complexity of weighted team definability for logics with team semantics. This problem is a natural analog of one of the most studied problems in parameterized complexity, the notion of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with free relation variables. We focus on the parameterized complexity of weighted team definability for a fixed formula <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000033_inline1.png\" /> <jats:tex-math> $\\varphi$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of central team-based logics. Given a first-order structure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000033_inline2.png\" /> <jats:tex-math> $\\mathcal{A}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the parameter value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000033_inline3.png\" /> <jats:tex-math> $k\\in \\mathbb N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as input, the question is to determine whether <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000033_inline4.png\" /> <jats:tex-math> $\\mathcal{A},T\\models \\varphi$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some team <jats:italic>T</jats:italic> of size <jats:italic>k</jats:italic>. We show several results on the complexity of this problem for dependence, independence, and inclusion logic formulas. Moreover, we also relate the complexity of weighted team definability to the complexity classes in the well-known W-hierarchy as well as paraNP.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"36 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized complexity of weighted team definability\",\"authors\":\"Juha Kontinen, Yasir Mahmood, Arne Meier, Heribert Vollmer\",\"doi\":\"10.1017/s0960129524000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the complexity of weighted team definability for logics with team semantics. This problem is a natural analog of one of the most studied problems in parameterized complexity, the notion of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with free relation variables. We focus on the parameterized complexity of weighted team definability for a fixed formula <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000033_inline1.png\\\" /> <jats:tex-math> $\\\\varphi$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of central team-based logics. Given a first-order structure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000033_inline2.png\\\" /> <jats:tex-math> $\\\\mathcal{A}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and the parameter value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000033_inline3.png\\\" /> <jats:tex-math> $k\\\\in \\\\mathbb N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as input, the question is to determine whether <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000033_inline4.png\\\" /> <jats:tex-math> $\\\\mathcal{A},T\\\\models \\\\varphi$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for some team <jats:italic>T</jats:italic> of size <jats:italic>k</jats:italic>. We show several results on the complexity of this problem for dependence, independence, and inclusion logic formulas. Moreover, we also relate the complexity of weighted team definability to the complexity classes in the well-known W-hierarchy as well as paraNP.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000033\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有团队语义的逻辑的加权团队可定义性的复杂性。这个问题是参数化复杂性中研究得最多的问题之一--加权法金可定义性概念--的自然类比,它是用具有自由关系变量的一阶公式的满足度来表述的。我们重点研究基于中心团队逻辑的固定公式 $\varphi$ 的加权团队可定义性的参数化复杂度。给定一阶结构 $\mathcal{A}$ 和参数值 $k\in \mathbb N$ 作为输入,问题是确定 $\mathcal{A},T 是否为某个大小为 k 的团队 T 的 \varphi$ 模型。此外,我们还将加权团队可定义性的复杂性与众所周知的 W-层次结构中的复杂性类别以及 paraNP 联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized complexity of weighted team definability
In this article, we study the complexity of weighted team definability for logics with team semantics. This problem is a natural analog of one of the most studied problems in parameterized complexity, the notion of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with free relation variables. We focus on the parameterized complexity of weighted team definability for a fixed formula $\varphi$ of central team-based logics. Given a first-order structure $\mathcal{A}$ and the parameter value $k\in \mathbb N$ as input, the question is to determine whether $\mathcal{A},T\models \varphi$ for some team T of size k. We show several results on the complexity of this problem for dependence, independence, and inclusion logic formulas. Moreover, we also relate the complexity of weighted team definability to the complexity classes in the well-known W-hierarchy as well as paraNP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信