谱序列的同调理论

Pub Date : 2024-02-21 DOI:10.4310/hha.2024.v26.n1.a5
Muriel Livernet, Sarah Whitehouse
{"title":"谱序列的同调理论","authors":"Muriel Livernet, Sarah Whitehouse","doi":"10.4310/hha.2024.v26.n1.a5","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with unit. We consider the homotopy theory of the category of spectral sequences of $R$-modules with the class of weak equivalences given by those morphisms inducing a quasi-isomorphism at a certain fixed page. We show that this admits a structure close to that of a category of fibrant objects in the sense of Brown and in particular the structure of a partial Brown category with fibrant objects. We use this to compare with related structures on the categories of multicomplexes and filtered complexes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy theory of spectral sequences\",\"authors\":\"Muriel Livernet, Sarah Whitehouse\",\"doi\":\"10.4310/hha.2024.v26.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring with unit. We consider the homotopy theory of the category of spectral sequences of $R$-modules with the class of weak equivalences given by those morphisms inducing a quasi-isomorphism at a certain fixed page. We show that this admits a structure close to that of a category of fibrant objects in the sense of Brown and in particular the structure of a partial Brown category with fibrant objects. We use this to compare with related structures on the categories of multicomplexes and filtered complexes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $R$ 是一个有单元的交换环。我们考虑 $R$ 模量的谱序列类别的同调理论,该类别的弱等价性由那些在某个固定页面诱导准同构的形态给出。我们证明,它的结构接近于布朗意义上的纤维对象范畴,特别是具有纤维对象的部分布朗范畴的结构。我们将其与多复数和滤波复数范畴的相关结构进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homotopy theory of spectral sequences
Let $R$ be a commutative ring with unit. We consider the homotopy theory of the category of spectral sequences of $R$-modules with the class of weak equivalences given by those morphisms inducing a quasi-isomorphism at a certain fixed page. We show that this admits a structure close to that of a category of fibrant objects in the sense of Brown and in particular the structure of a partial Brown category with fibrant objects. We use this to compare with related structures on the categories of multicomplexes and filtered complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信