操作数 II 上的不稳定数组

Pub Date : 2024-02-21 DOI:10.4310/hha.2024.v26.n1.a4
Sacha Ikonicoff
{"title":"操作数 II 上的不稳定数组","authors":"Sacha Ikonicoff","doi":"10.4310/hha.2024.v26.n1.a4","DOIUrl":null,"url":null,"abstract":"$\\def\\P\\{\\mathcal{P}}$We work over the finite field $\\mathbb{F}_q$. We introduce a notion of unstable $\\P$-algebra over an operad $\\P$. We show that the unstable $\\P$-algebra freely generated by an unstable module is itself a free $\\P$-algebra under suitable conditions. We introduce a family of ‘$q$-level’ operads which allows us to identify unstable modules studied by Brown–Gitler, Miller and Carlsson in terms of free unstable $q$-level algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unstable algebras over an operad II\",\"authors\":\"Sacha Ikonicoff\",\"doi\":\"10.4310/hha.2024.v26.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\P\\\\{\\\\mathcal{P}}$We work over the finite field $\\\\mathbb{F}_q$. We introduce a notion of unstable $\\\\P$-algebra over an operad $\\\\P$. We show that the unstable $\\\\P$-algebra freely generated by an unstable module is itself a free $\\\\P$-algebra under suitable conditions. We introduce a family of ‘$q$-level’ operads which allows us to identify unstable modules studied by Brown–Gitler, Miller and Carlsson in terms of free unstable $q$-level algebras.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2024.v26.n1.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n1.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在有限域 $\mathbb{F}_q$ 上工作。我们引入了在操作数 $\P$ 上的不稳定 $P$-gebra 的概念。我们证明由不稳定模块自由生成的不稳定 $\P$- 代数在合适的条件下本身就是一个自由 $\P$- 代数。我们引入了一个"$q$级 "操作数族,它允许我们用自由的不稳定的$q$级代数来识别布朗-吉特勒、米勒和卡尔松所研究的不稳定模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Unstable algebras over an operad II
$\def\P\{\mathcal{P}}$We work over the finite field $\mathbb{F}_q$. We introduce a notion of unstable $\P$-algebra over an operad $\P$. We show that the unstable $\P$-algebra freely generated by an unstable module is itself a free $\P$-algebra under suitable conditions. We introduce a family of ‘$q$-level’ operads which allows us to identify unstable modules studied by Brown–Gitler, Miller and Carlsson in terms of free unstable $q$-level algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信