Yu Sun , Jinxing Mi , Liang Li , Shuxiu Yu , Shixiong Yuan , Guimin Wang , Jianjun Chen , Junhua Li
{"title":"源自 CuMgAl-LDH 的 Cu2O/LDH 异质结:增强 Cu+ 在 CO2 电还原中的稳定性","authors":"Yu Sun , Jinxing Mi , Liang Li , Shuxiu Yu , Shixiong Yuan , Guimin Wang , Jianjun Chen , Junhua Li","doi":"10.1016/j.catcom.2024.106880","DOIUrl":null,"url":null,"abstract":"<div><p>The unique ability of Cu<sup>+</sup> to enhance C-C coupling makes it important in the field of CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) over Cu-based catalyst, while Cu<sup>+</sup> is very prone to deactivation. Hereby, we propose a simple and feasible stabilization strategy to stabilize Cu<sup>+</sup> species through reducing Cu-Mg-Al hydrotalcite by adding ascorbic acid, which owns stable product selectivity in a span of 6 h at −0.95 V vs.RHE. Characterization results show that the excellent stability is promoted by the heterostructure of Cu<sub>2</sub>O and hydrotalcite with retained Cu<sup>+</sup> species, which derives from Cu<sub>2</sub>O and slow down the rapid reduction of Cu<sup>+</sup> to Cu<sup>0</sup>.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106880"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000402/pdfft?md5=07135afaa2c354684ca879dc6950f9ff&pid=1-s2.0-S1566736724000402-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cu2O/LDH heterojunction derived from CuMgAl-LDH: Enhanced stability of Cu+ in CO2 electroreduction\",\"authors\":\"Yu Sun , Jinxing Mi , Liang Li , Shuxiu Yu , Shixiong Yuan , Guimin Wang , Jianjun Chen , Junhua Li\",\"doi\":\"10.1016/j.catcom.2024.106880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique ability of Cu<sup>+</sup> to enhance C-C coupling makes it important in the field of CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) over Cu-based catalyst, while Cu<sup>+</sup> is very prone to deactivation. Hereby, we propose a simple and feasible stabilization strategy to stabilize Cu<sup>+</sup> species through reducing Cu-Mg-Al hydrotalcite by adding ascorbic acid, which owns stable product selectivity in a span of 6 h at −0.95 V vs.RHE. Characterization results show that the excellent stability is promoted by the heterostructure of Cu<sub>2</sub>O and hydrotalcite with retained Cu<sup>+</sup> species, which derives from Cu<sub>2</sub>O and slow down the rapid reduction of Cu<sup>+</sup> to Cu<sup>0</sup>.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106880\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000402/pdfft?md5=07135afaa2c354684ca879dc6950f9ff&pid=1-s2.0-S1566736724000402-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000402\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000402","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cu2O/LDH heterojunction derived from CuMgAl-LDH: Enhanced stability of Cu+ in CO2 electroreduction
The unique ability of Cu+ to enhance C-C coupling makes it important in the field of CO2 reduction reaction (CO2RR) over Cu-based catalyst, while Cu+ is very prone to deactivation. Hereby, we propose a simple and feasible stabilization strategy to stabilize Cu+ species through reducing Cu-Mg-Al hydrotalcite by adding ascorbic acid, which owns stable product selectivity in a span of 6 h at −0.95 V vs.RHE. Characterization results show that the excellent stability is promoted by the heterostructure of Cu2O and hydrotalcite with retained Cu+ species, which derives from Cu2O and slow down the rapid reduction of Cu+ to Cu0.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.