捕食者-猎物随机模型的静态分布对参数的连续依赖性

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Nguyen Duc Toan, Nguyen Thanh Dieu, Nguyen Huu Du, Le Ba Dung
{"title":"捕食者-猎物随机模型的静态分布对参数的连续依赖性","authors":"Nguyen Duc Toan, Nguyen Thanh Dieu, Nguyen Huu Du, Le Ba Dung","doi":"10.1017/jpr.2023.98","DOIUrl":null,"url":null,"abstract":"<p>This research studies the robustness of permanence and the continuous dependence of the stationary distribution on the parameters for a stochastic predator–prey model with Beddington–DeAngelis functional response. We show that if the model is extinct (resp. permanent) for a parameter, it is still extinct (resp. permanent) in a neighbourhood of this parameter. In the case of extinction, the Lyapunov exponent of predator quantity is negative and the prey quantity converges almost to the saturated situation, where the predator is absent at an exponential rate. Under the condition of permanence, the unique stationary distribution converges weakly to the degenerate measure concentrated at the unique limit cycle or at the globally asymptotic equilibrium when the diffusion term tends to 0.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"34 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous dependence of stationary distributions on parameters for stochastic predator–prey models\",\"authors\":\"Nguyen Duc Toan, Nguyen Thanh Dieu, Nguyen Huu Du, Le Ba Dung\",\"doi\":\"10.1017/jpr.2023.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research studies the robustness of permanence and the continuous dependence of the stationary distribution on the parameters for a stochastic predator–prey model with Beddington–DeAngelis functional response. We show that if the model is extinct (resp. permanent) for a parameter, it is still extinct (resp. permanent) in a neighbourhood of this parameter. In the case of extinction, the Lyapunov exponent of predator quantity is negative and the prey quantity converges almost to the saturated situation, where the predator is absent at an exponential rate. Under the condition of permanence, the unique stationary distribution converges weakly to the degenerate measure concentrated at the unique limit cycle or at the globally asymptotic equilibrium when the diffusion term tends to 0.</p>\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2023.98\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.98","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了贝丁顿-德安吉利斯功能响应随机捕食者-猎物模型的永久性稳健性和静态分布对参数的连续依赖性。我们的研究表明,如果该模型在某一参数上灭绝(或永久),那么在该参数的邻域内它仍然是灭绝(或永久)的。在灭绝的情况下,捕食者数量的 Lyapunov 指数为负值,猎物数量几乎收敛到饱和状态,即捕食者以指数速度消失。在持久性条件下,当扩散项趋向于 0 时,唯一的静态分布弱收敛于集中于唯一极限周期或全局渐近平衡的退化度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous dependence of stationary distributions on parameters for stochastic predator–prey models

This research studies the robustness of permanence and the continuous dependence of the stationary distribution on the parameters for a stochastic predator–prey model with Beddington–DeAngelis functional response. We show that if the model is extinct (resp. permanent) for a parameter, it is still extinct (resp. permanent) in a neighbourhood of this parameter. In the case of extinction, the Lyapunov exponent of predator quantity is negative and the prey quantity converges almost to the saturated situation, where the predator is absent at an exponential rate. Under the condition of permanence, the unique stationary distribution converges weakly to the degenerate measure concentrated at the unique limit cycle or at the globally asymptotic equilibrium when the diffusion term tends to 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信