Maria Alberich-Carramiñana, Jordi Guàrdia, Enric Nart, Adrien Poteaux, Joaquim Roé, Martin Weimann
{"title":"汉塞尔域上的多项式因式分解","authors":"Maria Alberich-Carramiñana, Jordi Guàrdia, Enric Nart, Adrien Poteaux, Joaquim Roé, Martin Weimann","doi":"10.1007/s10208-024-09646-x","DOIUrl":null,"url":null,"abstract":"<p>We present an algorithm that, given an irreducible polynomial <i>g</i> over a general valued field (<i>K</i>, <i>v</i>), finds the factorization of <i>g</i> over the Henselianization of <i>K</i> under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial Factorization Over Henselian Fields\",\"authors\":\"Maria Alberich-Carramiñana, Jordi Guàrdia, Enric Nart, Adrien Poteaux, Joaquim Roé, Martin Weimann\",\"doi\":\"10.1007/s10208-024-09646-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an algorithm that, given an irreducible polynomial <i>g</i> over a general valued field (<i>K</i>, <i>v</i>), finds the factorization of <i>g</i> over the Henselianization of <i>K</i> under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09646-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09646-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种算法,在给定一般有值域(K,v)上的不可约多项式 g 的情况下,可以在一定条件下找到 g 在 K 的 Henselianization 上的因式分解。该算法的分析沿袭了奥雷(Ore)、麦克莱恩(Mac Lane)、奥库津(Okutsu)、蒙特斯(Montes)、瓦基耶(Vaquié)和埃雷拉-奥拉拉-马赫布-斯皮瓦科夫斯基(Herrera-Olalla-Mahboub-Spivakovsky)的研究成果,我们在此回顾一下他们的工作。正确性基于一个关键的新结果(定理 4.10),它展示了任意估值背景下广义牛顿多边形与因式分解之间的关系。这使我们能够开发出一种多项式因式分解算法和一种不可还原性检验,超越了经典的离散、秩一情况。这些基础性结果可能会应用于函数场算术、超曲面去星形化、多变量普伊塞克斯数列或估值理论中涉及的各种计算任务。
We present an algorithm that, given an irreducible polynomial g over a general valued field (K, v), finds the factorization of g over the Henselianization of K under certain conditions. The analysis leading to the algorithm follows the footsteps of Ore, Mac Lane, Okutsu, Montes, Vaquié and Herrera–Olalla–Mahboub–Spivakovsky, whose work we review in our context. The correctness is based on a key new result (Theorem 4.10), exhibiting relations between generalized Newton polygons and factorization in the context of an arbitrary valuation. This allows us to develop a polynomial factorization algorithm and an irreducibility test that go beyond the classical discrete, rank-one case. These foundational results may find applications for various computational tasks involved in arithmetic of function fields, desingularization of hypersurfaces, multivariate Puiseux series or valuation theory.