沃尔特拉晶格、阿贝尔第一类方程和 SIR 流行病模型

Atsushi Nobe
{"title":"沃尔特拉晶格、阿贝尔第一类方程和 SIR 流行病模型","authors":"Atsushi Nobe","doi":"arxiv-2402.11888","DOIUrl":null,"url":null,"abstract":"The Volterra lattice, when imposing non-zero constant boundary values, admits\nthe structure of a completely integrable Hamiltonian system if the system size\nis sufficiently small. Such a Volterra lattice can be regarded as an epidemic\nmodel known as the SIR model with vaccination, which extends the celebrated SIR\nmodel to account for vaccination. Upon the introduction of an appropriate\nvariable transformation, the SIR model with vaccination reduces to an Abel\nequation of the first kind, which corresponds to an exact differential\nequation. The equipotential curve of the exact differential equation is the\nLambert curve. Thus, the general solution to the initial value problem of the\nSIR model with vaccination, or the Volterra lattice with constant boundary\nvalues, is implicitly provided by using the Lambert W function.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Volterra lattice, Abel's equation of the first kind, and the SIR epidemic models\",\"authors\":\"Atsushi Nobe\",\"doi\":\"arxiv-2402.11888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Volterra lattice, when imposing non-zero constant boundary values, admits\\nthe structure of a completely integrable Hamiltonian system if the system size\\nis sufficiently small. Such a Volterra lattice can be regarded as an epidemic\\nmodel known as the SIR model with vaccination, which extends the celebrated SIR\\nmodel to account for vaccination. Upon the introduction of an appropriate\\nvariable transformation, the SIR model with vaccination reduces to an Abel\\nequation of the first kind, which corresponds to an exact differential\\nequation. The equipotential curve of the exact differential equation is the\\nLambert curve. Thus, the general solution to the initial value problem of the\\nSIR model with vaccination, or the Volterra lattice with constant boundary\\nvalues, is implicitly provided by using the Lambert W function.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.11888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.11888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当施加非零常数边界值时,如果系统规模足够小,Volterra 网格就会具有完全可积分哈密顿系统的结构。这种 Volterra 网格可被视为一种流行病模型,即带疫苗接种的 SIR 模型,它扩展了著名的 SIR 模型,以考虑疫苗接种。在引入适当的变量变换后,带疫苗接种的 SIR 模型就简化为第一类阿贝勒方程,相当于精确微分方程。精确微分方程的等势线就是兰伯特曲线。因此,有疫苗接种的 SIR 模型或具有恒定边界值的 Volterra 晶格的初值问题的一般解,是通过使用兰伯特 W 函数隐含提供的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Volterra lattice, Abel's equation of the first kind, and the SIR epidemic models
The Volterra lattice, when imposing non-zero constant boundary values, admits the structure of a completely integrable Hamiltonian system if the system size is sufficiently small. Such a Volterra lattice can be regarded as an epidemic model known as the SIR model with vaccination, which extends the celebrated SIR model to account for vaccination. Upon the introduction of an appropriate variable transformation, the SIR model with vaccination reduces to an Abel equation of the first kind, which corresponds to an exact differential equation. The equipotential curve of the exact differential equation is the Lambert curve. Thus, the general solution to the initial value problem of the SIR model with vaccination, or the Volterra lattice with constant boundary values, is implicitly provided by using the Lambert W function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信