{"title":"在氧化镁(110)基底上生长的 Co/Pt 双层膜中的巨界面面内磁各向异性","authors":"Chao Zhou, Jia Xu, Yizheng Wu","doi":"10.1103/physrevmaterials.8.024408","DOIUrl":null,"url":null,"abstract":"Strong magnetic anisotropy is crucial for spintronic devices, but the strength of in-plane anisotropy (IMA) has constrained its applications in magnetic storage devices in contrast with the perpendicular magnetic anisotropy (PMA). In our study, we observed a giant interfacial uniaxial IMA in Co/Pt(110) bilayers that is approximately five times larger than the PMA in Co/Pt(111) systems. By adding another interface to form Pt/Co/Pt trilayers, the total interfacial uniaxial IMA can be further enhanced to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>13.1</mn><mo>±</mo><mn>0.3</mn><mspace width=\"0.16em\"></mspace><mi>erg</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></math>, making it a promising platform for high-density storage devices. The interfacial IMA in Co/Pt(110) bilayers is related to the Co at the interface and can be controlled by inserting an ultrathin Cu layer. Our results demonstrated the strong in-plane anisotropy in Co/Pt(110) systems, making it a promising platform for studying the spintronic phenomenon in strongly anisotropic systems.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"52 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant interfacial in-plane magnetic anisotropy in Co/Pt bilayers grown on MgO(110) substrates\",\"authors\":\"Chao Zhou, Jia Xu, Yizheng Wu\",\"doi\":\"10.1103/physrevmaterials.8.024408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strong magnetic anisotropy is crucial for spintronic devices, but the strength of in-plane anisotropy (IMA) has constrained its applications in magnetic storage devices in contrast with the perpendicular magnetic anisotropy (PMA). In our study, we observed a giant interfacial uniaxial IMA in Co/Pt(110) bilayers that is approximately five times larger than the PMA in Co/Pt(111) systems. By adding another interface to form Pt/Co/Pt trilayers, the total interfacial uniaxial IMA can be further enhanced to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>13.1</mn><mo>±</mo><mn>0.3</mn><mspace width=\\\"0.16em\\\"></mspace><mi>erg</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mn>2</mn></msup></mrow></math>, making it a promising platform for high-density storage devices. The interfacial IMA in Co/Pt(110) bilayers is related to the Co at the interface and can be controlled by inserting an ultrathin Cu layer. Our results demonstrated the strong in-plane anisotropy in Co/Pt(110) systems, making it a promising platform for studying the spintronic phenomenon in strongly anisotropic systems.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.024408\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.024408","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
强磁各向异性对自旋电子器件至关重要,但与垂直磁各向异性(PMA)相比,面内各向异性(IMA)的强度限制了它在磁存储设备中的应用。在我们的研究中,我们在 Co/Pt(110) 双层膜中观察到了巨大的界面单轴 IMA,它大约是 Co/Pt(111) 系统中 PMA 的五倍。通过添加另一个界面以形成 Pt/Co/Pt 三层膜,总的界面单轴 IMA 可以进一步提高到 13.1±0.3erg/cm2 ,使其成为一个很有前途的高密度存储设备平台。Co/Pt(110) 双层膜中的界面 IMA 与界面上的 Co 有关,可以通过插入超薄铜层来控制。我们的研究结果表明,Co/Pt(110) 系统具有很强的面内各向异性,使其成为研究强各向异性系统中自旋电子现象的理想平台。
Giant interfacial in-plane magnetic anisotropy in Co/Pt bilayers grown on MgO(110) substrates
Strong magnetic anisotropy is crucial for spintronic devices, but the strength of in-plane anisotropy (IMA) has constrained its applications in magnetic storage devices in contrast with the perpendicular magnetic anisotropy (PMA). In our study, we observed a giant interfacial uniaxial IMA in Co/Pt(110) bilayers that is approximately five times larger than the PMA in Co/Pt(111) systems. By adding another interface to form Pt/Co/Pt trilayers, the total interfacial uniaxial IMA can be further enhanced to , making it a promising platform for high-density storage devices. The interfacial IMA in Co/Pt(110) bilayers is related to the Co at the interface and can be controlled by inserting an ultrathin Cu layer. Our results demonstrated the strong in-plane anisotropy in Co/Pt(110) systems, making it a promising platform for studying the spintronic phenomenon in strongly anisotropic systems.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.