{"title":"$$(2+1)$$ -dimensional 退化振荡积分算子的一些新衰变估计值","authors":"Yuxin Tan, Shaozhen Xu","doi":"10.1007/s00013-024-01966-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the <span>\\((2+1)\\)</span>-dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of (Forum Math. 18:427–444, 2006). We improve the previously known <span>\\(L^2\\rightarrow L^2\\)</span> decay rate to 3/8 and also establish a sharp <span>\\(L^2\\rightarrow L^6\\)</span> decay estimate based on the fractional integration method.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new decay estimates for \\\\((2+1)\\\\)-dimensional degenerate oscillatory integral operators\",\"authors\":\"Yuxin Tan, Shaozhen Xu\",\"doi\":\"10.1007/s00013-024-01966-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the <span>\\\\((2+1)\\\\)</span>-dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of (Forum Math. 18:427–444, 2006). We improve the previously known <span>\\\\(L^2\\\\rightarrow L^2\\\\)</span> decay rate to 3/8 and also establish a sharp <span>\\\\(L^2\\\\rightarrow L^6\\\\)</span> decay estimate based on the fractional integration method.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01966-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01966-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some new decay estimates for \((2+1)\)-dimensional degenerate oscillatory integral operators
In this paper, we consider the \((2+1)\)-dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of (Forum Math. 18:427–444, 2006). We improve the previously known \(L^2\rightarrow L^2\) decay rate to 3/8 and also establish a sharp \(L^2\rightarrow L^6\) decay estimate based on the fractional integration method.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.