$$(2+1)$$ -dimensional 退化振荡积分算子的一些新衰变估计值

IF 0.5 4区 数学 Q3 MATHEMATICS
Yuxin Tan, Shaozhen Xu
{"title":"$$(2+1)$$ -dimensional 退化振荡积分算子的一些新衰变估计值","authors":"Yuxin Tan,&nbsp;Shaozhen Xu","doi":"10.1007/s00013-024-01966-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the <span>\\((2+1)\\)</span>-dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of (Forum Math. 18:427–444, 2006). We improve the previously known <span>\\(L^2\\rightarrow L^2\\)</span> decay rate to 3/8 and also establish a sharp <span>\\(L^2\\rightarrow L^6\\)</span> decay estimate based on the fractional integration method.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some new decay estimates for \\\\((2+1)\\\\)-dimensional degenerate oscillatory integral operators\",\"authors\":\"Yuxin Tan,&nbsp;Shaozhen Xu\",\"doi\":\"10.1007/s00013-024-01966-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the <span>\\\\((2+1)\\\\)</span>-dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of (Forum Math. 18:427–444, 2006). We improve the previously known <span>\\\\(L^2\\\\rightarrow L^2\\\\)</span> decay rate to 3/8 and also establish a sharp <span>\\\\(L^2\\\\rightarrow L^6\\\\)</span> decay estimate based on the fractional integration method.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01966-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01966-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了具有立方均质多项式相的((2+1)\)-维振荡积分算子,它们在(Forum Math. 18:427-444, 2006)的意义上是退化的。我们将之前已知的 \(L^2\rightarrow L^2\) 衰变率提高到了 3/8,并基于分数积分法建立了一个尖锐的 \(L^2\rightarrow L^6\) 衰变估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some new decay estimates for \((2+1)\)-dimensional degenerate oscillatory integral operators

In this paper, we consider the \((2+1)\)-dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of (Forum Math. 18:427–444, 2006). We improve the previously known \(L^2\rightarrow L^2\) decay rate to 3/8 and also establish a sharp \(L^2\rightarrow L^6\) decay estimate based on the fractional integration method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信