非平滑优化非精确信任区域方法的局部收敛分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Robert J. Baraldi, Drew P. Kouri
{"title":"非平滑优化非精确信任区域方法的局部收敛分析","authors":"Robert J. Baraldi, Drew P. Kouri","doi":"10.1007/s11590-023-02092-8","DOIUrl":null,"url":null,"abstract":"<p>In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local convergence analysis of an inexact trust-region method for nonsmooth optimization\",\"authors\":\"Robert J. Baraldi, Drew P. Kouri\",\"doi\":\"10.1007/s11590-023-02092-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02092-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-023-02092-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在《Baraldi》(Math Program 20:1-40, 2022)中,我们介绍了一种用于最小化希尔伯特空间中平滑非凸函数与非平滑凸函数之和的非精确信任区域算法--这类问题在数据科学、学习、最优控制和逆问题中无处不在。该算法表现出卓越的性能,并可随着问题规模的增大而扩展。在本文中,我们丰富了该算法的收敛性分析,证明了迭代的强收敛性和保证率。特别是,我们证明了当使用二阶泰勒近似平滑目标函数项时,信任区域算法能恢复超线性甚至二次收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Local convergence analysis of an inexact trust-region method for nonsmooth optimization

Local convergence analysis of an inexact trust-region method for nonsmooth optimization

In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信