{"title":"非平滑优化非精确信任区域方法的局部收敛分析","authors":"Robert J. Baraldi, Drew P. Kouri","doi":"10.1007/s11590-023-02092-8","DOIUrl":null,"url":null,"abstract":"<p>In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local convergence analysis of an inexact trust-region method for nonsmooth optimization\",\"authors\":\"Robert J. Baraldi, Drew P. Kouri\",\"doi\":\"10.1007/s11590-023-02092-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02092-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-023-02092-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在《Baraldi》(Math Program 20:1-40, 2022)中,我们介绍了一种用于最小化希尔伯特空间中平滑非凸函数与非平滑凸函数之和的非精确信任区域算法--这类问题在数据科学、学习、最优控制和逆问题中无处不在。该算法表现出卓越的性能,并可随着问题规模的增大而扩展。在本文中,我们丰富了该算法的收敛性分析,证明了迭代的强收敛性和保证率。特别是,我们证明了当使用二阶泰勒近似平滑目标函数项时,信任区域算法能恢复超线性甚至二次收敛率。
Local convergence analysis of an inexact trust-region method for nonsmooth optimization
In Baraldi (Math Program 20:1–40, 2022), we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated excellent performance and scalability with problem size. In this paper, we enrich the convergence analysis for this algorithm, proving strong convergence of the iterates with guaranteed rates. In particular, we demonstrate that the trust-region algorithm recovers superlinear, even quadratic, convergence rates when using a second-order Taylor approximation of the smooth objective function term.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.