{"title":"基于注意力和特征互补融合的深度神经网络,用于小样本合成孔径雷达图像分类","authors":"Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen","doi":"10.1117/1.jrs.18.014519","DOIUrl":null,"url":null,"abstract":"In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep neural network based on attention and feature complementary fusion for synthetic aperture radar image classification with small samples\",\"authors\":\"Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen\",\"doi\":\"10.1117/1.jrs.18.014519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014519\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep neural network based on attention and feature complementary fusion for synthetic aperture radar image classification with small samples
In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.