基于注意力和特征互补融合的深度神经网络,用于小样本合成孔径雷达图像分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen
{"title":"基于注意力和特征互补融合的深度神经网络,用于小样本合成孔径雷达图像分类","authors":"Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen","doi":"10.1117/1.jrs.18.014519","DOIUrl":null,"url":null,"abstract":"In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep neural network based on attention and feature complementary fusion for synthetic aperture radar image classification with small samples\",\"authors\":\"Xiaoning Liu, Furong Shi, Haixia Xu, Liming Yuan, Xianbin Wen\",\"doi\":\"10.1117/1.jrs.18.014519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014519\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014519","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于卷积神经网络(CNN)的方法在合成孔径雷达(SAR)图像的目标分类问题上取得了重大成果。然而,SAR 图像数据标注的挑战和 CNN 依赖大量标注数据进行训练的特点严重限制了这一领域的进一步发展。在这项工作中,我们提出了一种基于注意力机制和特征互补融合(AFCF-CNN)的方法来应对这些挑战。首先,我们设计并构建了一个用于提取和融合多层特征的特征互补模块,充分利用有限的数据和不同层之间的上下文信息来捕捉更健壮的特征表征。然后,注意力机制可以减少冗余背景信息的干扰,同时突出图像中关键目标的权重信息,进一步增强关键的局部特征表征。最后,在移动和静止目标获取与识别数据集上进行的实验表明,尽管训练数据严重不足,我们的模型仍明显优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network based on attention and feature complementary fusion for synthetic aperture radar image classification with small samples
In recent years, methods based on convolutional neural networks (CNNs) have achieved significant results in the problem of target classification of synthetic aperture radar (SAR) images. However, the challenges of SAR image data labeling and the characteristics of CNNs relying on a large amount of labeled data for training have seriously limited the further development of this field. In this work, we propose an approach based on attention mechanism and feature complementary fusion (AFCF-CNN) to address these challenges. First, we design and construct a feature complementary module for extracting and fusing multi-layer features, making full use of limited data and utilizing contextual information between different layers to capture more robust feature representations. Then, the attention mechanism reduces the interference of redundant background information, while it highlights the weight information of key targets in the image to further enhance the key local feature representations. Finally, experiments conducted on the moving and stationary target acquisition and recognition dataset show that our model significantly outperforms other state-of-the-art methods despite severe shortages of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信