{"title":"n-Hom-Lie色彩代数的同调与形式变形","authors":"K. Abdaoui, R. Gharbi, S. Mabrouk, A. Makhlouf","doi":"10.1007/s11253-024-02264-4","DOIUrl":null,"url":null,"abstract":"<p>We provide a cohomology of <i>n</i>-Hom–Lie color algebras, in particular, a cohomology governing oneparameter formal deformations. Then we also study formal deformations of the <i>n</i>-Hom–Lie color algebras and introduce the notion of Nijenhuis operator on an <i>n</i>-Hom–Lie color algebra, which may give rise to infinitesimally trivial (<i>n −</i> 1)th-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of product structure on <i>n</i>-Hom–Lie color algebras.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomology and Formal Deformations of n-Hom–Lie Color Algebras\",\"authors\":\"K. Abdaoui, R. Gharbi, S. Mabrouk, A. Makhlouf\",\"doi\":\"10.1007/s11253-024-02264-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a cohomology of <i>n</i>-Hom–Lie color algebras, in particular, a cohomology governing oneparameter formal deformations. Then we also study formal deformations of the <i>n</i>-Hom–Lie color algebras and introduce the notion of Nijenhuis operator on an <i>n</i>-Hom–Lie color algebra, which may give rise to infinitesimally trivial (<i>n −</i> 1)th-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of product structure on <i>n</i>-Hom–Lie color algebras.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02264-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02264-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cohomology and Formal Deformations of n-Hom–Lie Color Algebras
We provide a cohomology of n-Hom–Lie color algebras, in particular, a cohomology governing oneparameter formal deformations. Then we also study formal deformations of the n-Hom–Lie color algebras and introduce the notion of Nijenhuis operator on an n-Hom–Lie color algebra, which may give rise to infinitesimally trivial (n − 1)th-order deformations. Furthermore, in connection with Nijenhuis operators, we introduce and discuss the notion of product structure on n-Hom–Lie color algebras.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.