{"title":"高维接触阿诺索夫流的平滑刚性","authors":"","doi":"10.1007/s11253-024-02266-2","DOIUrl":null,"url":null,"abstract":"<p>We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [<em>Ergodic Theory Dynam. Syst.</em>, <strong>7</strong>, No. 1, 49–72 (1987)]. Namely, we show that if two Anosov flow of this kind are <em>C</em><sup>0</sup> conjugate, then they are <em>C</em><sup><em>r</em></sup> conjugate for some <em>r</em> ∈ [1<em>,</em> 2) or even <em>C</em><sup>∞</sup> conjugate under certain additional assumptions. This, e.g., applies to geodesic flows on compact Riemannian manifolds of 1<em>/</em>4-pinched negative sectional curvature. We can also use our result to recover Hamendstädt’s marked length spectrum rigidity result for real hyperbolic manifolds.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"30 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth Rigidity for Higher-Dimensional Contact Anosov Flows\",\"authors\":\"\",\"doi\":\"10.1007/s11253-024-02266-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [<em>Ergodic Theory Dynam. Syst.</em>, <strong>7</strong>, No. 1, 49–72 (1987)]. Namely, we show that if two Anosov flow of this kind are <em>C</em><sup>0</sup> conjugate, then they are <em>C</em><sup><em>r</em></sup> conjugate for some <em>r</em> ∈ [1<em>,</em> 2) or even <em>C</em><sup>∞</sup> conjugate under certain additional assumptions. This, e.g., applies to geodesic flows on compact Riemannian manifolds of 1<em>/</em>4-pinched negative sectional curvature. We can also use our result to recover Hamendstädt’s marked length spectrum rigidity result for real hyperbolic manifolds.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02266-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02266-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Smooth Rigidity for Higher-Dimensional Contact Anosov Flows
We apply the technique of matching functions in the setting of contact Anosov flows satisfying a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman and Ornstein [Ergodic Theory Dynam. Syst., 7, No. 1, 49–72 (1987)]. Namely, we show that if two Anosov flow of this kind are C0 conjugate, then they are Cr conjugate for some r ∈ [1, 2) or even C∞ conjugate under certain additional assumptions. This, e.g., applies to geodesic flows on compact Riemannian manifolds of 1/4-pinched negative sectional curvature. We can also use our result to recover Hamendstädt’s marked length spectrum rigidity result for real hyperbolic manifolds.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.