双序列求和加权平均法的一些陶伯定理

Pub Date : 2024-02-20 DOI:10.1007/s11253-024-02272-4
{"title":"双序列求和加权平均法的一些陶伯定理","authors":"","doi":"10.1007/s11253-024-02272-4","DOIUrl":null,"url":null,"abstract":"<p>Let <em>p</em> = (<em>p</em><sub><em>j</em></sub>) and <em>q</em> = (<em>q</em><sub><em>k</em></sub>) be real sequences of nonnegative numbers with the property that</p> <p><span> <span>\\(\\begin{array}{ccccccc}{P}_{m}=\\sum_{j=0}^{m}{p}_{j}\\ne 0&amp; {\\text{and}}&amp; {Q}_{m}=\\sum_{k=0}^{n}{q}_{k}\\ne 0&amp; \\mathrm{for all}&amp; m&amp; {\\text{and}}&amp; n.\\end{array}\\)</span> </span></p> <p>Also let (<em>P</em><sub><em>m</em></sub>) and (<em>Q</em><sub><em>n</em></sub>) be regularly varying positive indices. Assume that (<em>u</em><sub><em>mn</em></sub>) is a double sequence of complex (real) numbers, which is (<span> <span>\\(\\overline{N }\\)</span> </span><em>, p, q</em>; <em>α, β</em>)-summable and has a finite limit, where (<em>α, β</em>) = (1<em>,</em> 1)<em>,</em> (1<em>,</em> 0)<em>,</em> or (0<em>,</em> 1)<em>.</em> We present some conditions imposed on the weights under which (<em>u</em><sub><em>mn</em></sub>) converges in Pringsheim’s sense. These results generalize and extend the results obtained by the authors in [<em>Comput. Math. Appl.</em>, <strong>62</strong>, No. 6, 2609–2615 (2011)].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Tauberian Theorems for the Weighted Mean Method of Summability of Double Sequences\",\"authors\":\"\",\"doi\":\"10.1007/s11253-024-02272-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <em>p</em> = (<em>p</em><sub><em>j</em></sub>) and <em>q</em> = (<em>q</em><sub><em>k</em></sub>) be real sequences of nonnegative numbers with the property that</p> <p><span> <span>\\\\(\\\\begin{array}{ccccccc}{P}_{m}=\\\\sum_{j=0}^{m}{p}_{j}\\\\ne 0&amp; {\\\\text{and}}&amp; {Q}_{m}=\\\\sum_{k=0}^{n}{q}_{k}\\\\ne 0&amp; \\\\mathrm{for all}&amp; m&amp; {\\\\text{and}}&amp; n.\\\\end{array}\\\\)</span> </span></p> <p>Also let (<em>P</em><sub><em>m</em></sub>) and (<em>Q</em><sub><em>n</em></sub>) be regularly varying positive indices. Assume that (<em>u</em><sub><em>mn</em></sub>) is a double sequence of complex (real) numbers, which is (<span> <span>\\\\(\\\\overline{N }\\\\)</span> </span><em>, p, q</em>; <em>α, β</em>)-summable and has a finite limit, where (<em>α, β</em>) = (1<em>,</em> 1)<em>,</em> (1<em>,</em> 0)<em>,</em> or (0<em>,</em> 1)<em>.</em> We present some conditions imposed on the weights under which (<em>u</em><sub><em>mn</em></sub>) converges in Pringsheim’s sense. These results generalize and extend the results obtained by the authors in [<em>Comput. Math. Appl.</em>, <strong>62</strong>, No. 6, 2609–2615 (2011)].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02272-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02272-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 p = (pj) 和 q = (qk) 都是非负数的实数序列,其性质是:(\begin{array}{ccccccc}{P}_{m}=\sum_{j=0}^{m}{p}_{j}/ne 0&;{text{and}}& {Q}_{m}=\sum_{k=0}^{n}{q}_{k}\ne 0& \mathrm{for all}& m& {\text{and}}& n.\end{array}\) 另让(Pm)和(Qn)是有规律变化的正指数。假设 (umn) 是复数(实数)的双序列,它是( ( (overline{N }\ ) ,p,q;α,β)可求和的,并且有一个有限的极限,其中 (α, β) = (1,1),(1,0) 或 (0,1)。我们提出了一些权重条件,在这些条件下,(umn) 在普林塞姆意义上收敛。这些结果概括并扩展了作者在[《计算数学应用》,第 62 期,第 6 号,2609-2615 (2011)]中获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some Tauberian Theorems for the Weighted Mean Method of Summability of Double Sequences

Let p = (pj) and q = (qk) be real sequences of nonnegative numbers with the property that

\(\begin{array}{ccccccc}{P}_{m}=\sum_{j=0}^{m}{p}_{j}\ne 0& {\text{and}}& {Q}_{m}=\sum_{k=0}^{n}{q}_{k}\ne 0& \mathrm{for all}& m& {\text{and}}& n.\end{array}\)

Also let (Pm) and (Qn) be regularly varying positive indices. Assume that (umn) is a double sequence of complex (real) numbers, which is ( \(\overline{N }\) , p, q; α, β)-summable and has a finite limit, where (α, β) = (1, 1), (1, 0), or (0, 1). We present some conditions imposed on the weights under which (umn) converges in Pringsheim’s sense. These results generalize and extend the results obtained by the authors in [Comput. Math. Appl., 62, No. 6, 2609–2615 (2011)].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信