素环中广义衍生的乔丹同源行为

Pub Date : 2024-02-20 DOI:10.1007/s11253-024-02265-3
Nripendu Bera, Basudeb Dhara
{"title":"素环中广义衍生的乔丹同源行为","authors":"Nripendu Bera, Basudeb Dhara","doi":"10.1007/s11253-024-02265-3","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <i>R</i> is a prime ring with char(<i>R</i>) <i>≠</i> 2 and <i>f</i>(ξ<sub>1</sub><i>, . . . ,</i> ξ<sub><i>n</i></sub>) is a noncentral multilinear polynomial over <i>C</i>(= <i>Z</i>(<i>U</i>))<i>,</i> where <i>U</i> is the Utumi quotient ring of <i>R.</i> An additive mapping <i>h</i> : <i>R</i> ⟶<i> R</i> is called homoderivation if <i>h</i>(<i>ab</i>) = <i>h</i>(<i>a</i>)<i>h</i>(<i>b</i>)+<i>h</i>(<i>a</i>)<i>b</i>+<i>ah</i>(<i>b</i>) for all <i>a, b</i> ∈ <i>R.</i> We investigate the behavior of three generalized derivations <i>F, G,</i> and <i>H</i> of <i>R</i> satisfying the condition</p><p><span>\\(F\\left({\\xi }^{2}\\right)=G\\left({\\xi }^{2}\\right)+H\\left(\\xi \\right)\\xi +\\xi H\\left(\\xi \\right)\\)</span></p><p>for all ξ ∈<i> f</i>(<i>R</i>) = {<i>f</i>(ξ<sub>1</sub><i>, . . . ,</i> ξ<sub><i>n</i></sub>) <i>|</i> ξ<sub>1</sub><i>, . . . ,</i> ξ<sub><i>n</i></sub> ∈<i> R</i>}<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan Homoderivation Behavior of Generalized Derivations in Prime Rings\",\"authors\":\"Nripendu Bera, Basudeb Dhara\",\"doi\":\"10.1007/s11253-024-02265-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <i>R</i> is a prime ring with char(<i>R</i>) <i>≠</i> 2 and <i>f</i>(ξ<sub>1</sub><i>, . . . ,</i> ξ<sub><i>n</i></sub>) is a noncentral multilinear polynomial over <i>C</i>(= <i>Z</i>(<i>U</i>))<i>,</i> where <i>U</i> is the Utumi quotient ring of <i>R.</i> An additive mapping <i>h</i> : <i>R</i> ⟶<i> R</i> is called homoderivation if <i>h</i>(<i>ab</i>) = <i>h</i>(<i>a</i>)<i>h</i>(<i>b</i>)+<i>h</i>(<i>a</i>)<i>b</i>+<i>ah</i>(<i>b</i>) for all <i>a, b</i> ∈ <i>R.</i> We investigate the behavior of three generalized derivations <i>F, G,</i> and <i>H</i> of <i>R</i> satisfying the condition</p><p><span>\\\\(F\\\\left({\\\\xi }^{2}\\\\right)=G\\\\left({\\\\xi }^{2}\\\\right)+H\\\\left(\\\\xi \\\\right)\\\\xi +\\\\xi H\\\\left(\\\\xi \\\\right)\\\\)</span></p><p>for all ξ ∈<i> f</i>(<i>R</i>) = {<i>f</i>(ξ<sub>1</sub><i>, . . . ,</i> ξ<sub><i>n</i></sub>) <i>|</i> ξ<sub>1</sub><i>, . . . ,</i> ξ<sub><i>n</i></sub> ∈<i> R</i>}<i>.</i></p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02265-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02265-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 R 是质环,char(R) ≠ 2,f(ξ1, ... , ξn) 是 C(= Z(U))上的非中心多线性多项式,其中 U 是 R 的乌图米商环。如果对于所有 a, b∈ R,h(ab) = h(a)h(b)+h(a)b+ah(b) ,则加法映射 h : R ⟶ R 称为同化。对于所有ξ∈ f(R) = {f(ξ1,., ξn) | ξ1, ., ξn∈ R}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Jordan Homoderivation Behavior of Generalized Derivations in Prime Rings

Suppose that R is a prime ring with char(R) 2 and f1, . . . , ξn) is a noncentral multilinear polynomial over C(= Z(U)), where U is the Utumi quotient ring of R. An additive mapping h : R R is called homoderivation if h(ab) = h(a)h(b)+h(a)b+ah(b) for all a, bR. We investigate the behavior of three generalized derivations F, G, and H of R satisfying the condition

\(F\left({\xi }^{2}\right)=G\left({\xi }^{2}\right)+H\left(\xi \right)\xi +\xi H\left(\xi \right)\)

for all ξ ∈ f(R) = {f1, . . . , ξn) | ξ1, . . . , ξn R}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信