非 L 边能图参数的界限

IF 0.5 4区 数学 Q3 MATHEMATICS
Cahit Dede, Ayşe Dilek Maden
{"title":"非 L 边能图参数的界限","authors":"Cahit Dede, Ayşe Dilek Maden","doi":"10.1007/s11253-024-02268-0","DOIUrl":null,"url":null,"abstract":"<p>We consider graphs whose Laplacian energy is equivalent to the Laplacian energy of the complete graph of the same order, which is called an <i>L</i>-borderenergetic graph. First, we study the graphs with degree sequence consisting of at most three distinct integers and give new bounds for the number of vertices of these graphs to be non-<i>L</i>-borderenergetic. Second, by using Koolen–Moulton and McClelland inequalities, we give new bounds for the number of edges of a non-<i>L</i>-borderenergetic graph. Third, we use recent bounds established by Milovanovic, et al. for the Laplacian energy to get similar conditions for non-<i>L</i>-borderenergetic graphs. Our bounds depend only on the degree sequence of a graph, which is much easier than computing the spectrum of the graph. In other words, we develop a faster approach to exclude non-<i>L</i>-borderenergetic graphs.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"180 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the Parameters of Non-L-Borderenergetic Graphs\",\"authors\":\"Cahit Dede, Ayşe Dilek Maden\",\"doi\":\"10.1007/s11253-024-02268-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider graphs whose Laplacian energy is equivalent to the Laplacian energy of the complete graph of the same order, which is called an <i>L</i>-borderenergetic graph. First, we study the graphs with degree sequence consisting of at most three distinct integers and give new bounds for the number of vertices of these graphs to be non-<i>L</i>-borderenergetic. Second, by using Koolen–Moulton and McClelland inequalities, we give new bounds for the number of edges of a non-<i>L</i>-borderenergetic graph. Third, we use recent bounds established by Milovanovic, et al. for the Laplacian energy to get similar conditions for non-<i>L</i>-borderenergetic graphs. Our bounds depend only on the degree sequence of a graph, which is much easier than computing the spectrum of the graph. In other words, we develop a faster approach to exclude non-<i>L</i>-borderenergetic graphs.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-024-02268-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02268-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的图的拉普拉契亚能量等同于同阶完整图的拉普拉契亚能量,这种图被称为 L 边能图。首先,我们研究了阶数序列最多由三个不同整数组成的图,并给出了这些图的非 L 边能图顶点数的新边界。其次,利用库伦-莫尔顿不等式和麦克利兰不等式,我们给出了非 L 边形图的边数的新边界。第三,我们利用 Milovanovic 等人最近为拉普拉奇能量建立的边界,为非 L 边能图提供了类似的条件。我们的边界只取决于图的度数序列,这比计算图的谱要容易得多。换句话说,我们开发了一种更快的方法来排除非 L 边能图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on the Parameters of Non-L-Borderenergetic Graphs

We consider graphs whose Laplacian energy is equivalent to the Laplacian energy of the complete graph of the same order, which is called an L-borderenergetic graph. First, we study the graphs with degree sequence consisting of at most three distinct integers and give new bounds for the number of vertices of these graphs to be non-L-borderenergetic. Second, by using Koolen–Moulton and McClelland inequalities, we give new bounds for the number of edges of a non-L-borderenergetic graph. Third, we use recent bounds established by Milovanovic, et al. for the Laplacian energy to get similar conditions for non-L-borderenergetic graphs. Our bounds depend only on the degree sequence of a graph, which is much easier than computing the spectrum of the graph. In other words, we develop a faster approach to exclude non-L-borderenergetic graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信