DIEGO BARROS, CHRISTIAN BONATTI, MARIA JOSÉ PACIFICO
{"title":"上、下、双面洛伦兹吸引子、碰撞、合并和切换","authors":"DIEGO BARROS, CHRISTIAN BONATTI, MARIA JOSÉ PACIFICO","doi":"10.1017/etds.2024.8","DOIUrl":null,"url":null,"abstract":"We present a modified version of the well-known geometric Lorenz attractor. It consists of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline1.png\" /> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> open set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline2.png\" /> <jats:tex-math> ${\\mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of vector fields in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline3.png\" /> <jats:tex-math> ${\\mathbb R}^3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having an attracting region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline4.png\" /> <jats:tex-math> ${\\mathcal U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying three properties. Namely, a unique singularity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline5.png\" /> <jats:tex-math> $\\sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; a unique attractor <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline6.png\" /> <jats:tex-math> $\\Lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> including the singular point and the maximal invariant in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline7.png\" /> <jats:tex-math> ${\\mathcal U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most two chain recurrence classes, which are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline8.png\" /> <jats:tex-math> $\\Lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline9.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> codimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline10.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> submanifolds which split <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline11.png\" /> <jats:tex-math> ${\\mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> into three regions. By crossing this collision locus, the attractor and the horseshoe may merge into a two-sided Lorenz attractor, or they may exchange their nature: the Lorenz attractor expels the singular point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline12.png\" /> <jats:tex-math> $\\sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and becomes a horseshoe, and the horseshoe absorbs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000087_inline13.png\" /> <jats:tex-math> $\\sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> becoming a Lorenz attractor.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper, down, two-sided Lorenz attractor, collisions, merging, and switching\",\"authors\":\"DIEGO BARROS, CHRISTIAN BONATTI, MARIA JOSÉ PACIFICO\",\"doi\":\"10.1017/etds.2024.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a modified version of the well-known geometric Lorenz attractor. It consists of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline1.png\\\" /> <jats:tex-math> $C^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> open set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline2.png\\\" /> <jats:tex-math> ${\\\\mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of vector fields in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline3.png\\\" /> <jats:tex-math> ${\\\\mathbb R}^3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having an attracting region <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline4.png\\\" /> <jats:tex-math> ${\\\\mathcal U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying three properties. Namely, a unique singularity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline5.png\\\" /> <jats:tex-math> $\\\\sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; a unique attractor <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline6.png\\\" /> <jats:tex-math> $\\\\Lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> including the singular point and the maximal invariant in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline7.png\\\" /> <jats:tex-math> ${\\\\mathcal U}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has at most two chain recurrence classes, which are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline8.png\\\" /> <jats:tex-math> $\\\\Lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline9.png\\\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> codimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline10.png\\\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> submanifolds which split <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline11.png\\\" /> <jats:tex-math> ${\\\\mathcal O}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> into three regions. By crossing this collision locus, the attractor and the horseshoe may merge into a two-sided Lorenz attractor, or they may exchange their nature: the Lorenz attractor expels the singular point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline12.png\\\" /> <jats:tex-math> $\\\\sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and becomes a horseshoe, and the horseshoe absorbs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000087_inline13.png\\\" /> <jats:tex-math> $\\\\sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> becoming a Lorenz attractor.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upper, down, two-sided Lorenz attractor, collisions, merging, and switching
We present a modified version of the well-known geometric Lorenz attractor. It consists of a $C^1$ open set ${\mathcal O}$ of vector fields in ${\mathbb R}^3$ having an attracting region ${\mathcal U}$ satisfying three properties. Namely, a unique singularity $\sigma $ ; a unique attractor $\Lambda $ including the singular point and the maximal invariant in ${\mathcal U}$ has at most two chain recurrence classes, which are $\Lambda $ and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of $2$ codimension $1$ submanifolds which split ${\mathcal O}$ into three regions. By crossing this collision locus, the attractor and the horseshoe may merge into a two-sided Lorenz attractor, or they may exchange their nature: the Lorenz attractor expels the singular point $\sigma $ and becomes a horseshoe, and the horseshoe absorbs $\sigma $ becoming a Lorenz attractor.