通过 STARR-seq 鉴定具有长程调控潜力的高度重复大麦增强子

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY
Wanlin Zhou, Haoran Shi, Zhiqiang Wang, Yuxin Huang, Lin Ni, Xudong Chen, Yan Liu, Haojie Li, Caixia Li, Yaxi Liu
{"title":"通过 STARR-seq 鉴定具有长程调控潜力的高度重复大麦增强子","authors":"Wanlin Zhou, Haoran Shi, Zhiqiang Wang, Yuxin Huang, Lin Ni, Xudong Chen, Yan Liu, Haojie Li, Caixia Li, Yaxi Liu","doi":"10.1093/gpbjnl/qzae012","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active transcription mark H3K4me3 and repressive histone mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ± 100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This work specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"88 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of highly repetitive barley enhancers with long-range regulation potential via STARR-seq\",\"authors\":\"Wanlin Zhou, Haoran Shi, Zhiqiang Wang, Yuxin Huang, Lin Ni, Xudong Chen, Yan Liu, Haojie Li, Caixia Li, Yaxi Liu\",\"doi\":\"10.1093/gpbjnl/qzae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:title>Abstract</jats:title> Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active transcription mark H3K4me3 and repressive histone mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ± 100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This work specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 增强子是能够加强转录启动的 DNA 序列。然而,由于增强子的距离和方向不确定,植物增强子的全球鉴定非常复杂,尤其是在基因组较大的物种中。在这项研究中,我们首次进行了自转录活性调控区测序(STARR-seq),以鉴定大麦基因组中的增强子。共成功鉴定出7323个增强子,在随机选择的45个增强子中,超过75%的增强子通过烟草叶片下表皮的双荧光素酶报告检测系统验证是有效的。有趣的是,高达53.5%的大麦增强子是重复序列,尤其是转座元件(TE),从而加强了重复增强子在基因表达中的重要作用。在大麦 STARR-seq 增强子中,常见的活性转录标记 H3K4me3 和抑制性组蛋白标记 H3K27me3 都很丰富。此外,与水稻和玉米相比,大麦 STARR-seq 增强子的功能范围似乎更广,可延伸至基因体的±100 kb,这一发现与基因组中基因的高表达水平相一致。这项工作具体描述了大麦增强子的独特特征,并提供了可供进一步利用的大麦增强子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of highly repetitive barley enhancers with long-range regulation potential via STARR-seq
Abstract Enhancers are DNA sequences that can strengthen transcription initiation. However, the global identification of plant enhancers is complicated due to uncertainty in the distance and orientation of enhancers, especially in species with large genomes. In this study, we performed self-transcribing active regulatory region sequencing (STARR-seq) for the first time to identify enhancers across the barley genome. A total of 7323 enhancers were successfully identified, and among 45 randomly selected enhancers, over 75% were effective as validated by a dual-luciferase reporter assay system in the lower epidermis of tobacco leaves. Interestingly, up to 53.5% of the barley enhancers were repetitive sequences, especially transposable elements (TEs), thus reinforcing the vital role of repetitive enhancers in gene expression. Both the common active transcription mark H3K4me3 and repressive histone mark H3K27me3 were abundant among the barley STARR-seq enhancers. In addition, the functional range of barley STARR-seq enhancers seemed much broader than that of rice or maize and extended to ± 100 kb of the gene body, and this finding was consistent with the high expression levels of genes in the genome. This work specifically depicts the unique features of barley enhancers and provides available barley enhancers for further utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信