贝叶斯综合 $$L^p$$ -quantile 回归

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-02-21 DOI:10.1007/s00184-024-00950-8
{"title":"贝叶斯综合 $$L^p$$ -quantile 回归","authors":"","doi":"10.1007/s00184-024-00950-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p><span> <span>\\(L^p\\)</span> </span>-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, <span> <span>\\(p=1\\)</span> </span>, and expectiles, <span> <span>\\(p=2\\)</span> </span>, as special cases. This paper studies composite <span> <span>\\(L^p\\)</span> </span>-quantile regression, simultaneously extending single <span> <span>\\(L^p\\)</span> </span>-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian composite $$L^p$$ -quantile regression\",\"authors\":\"\",\"doi\":\"10.1007/s00184-024-00950-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p><span> <span>\\\\(L^p\\\\)</span> </span>-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, <span> <span>\\\\(p=1\\\\)</span> </span>, and expectiles, <span> <span>\\\\(p=2\\\\)</span> </span>, as special cases. This paper studies composite <span> <span>\\\\(L^p\\\\)</span> </span>-quantile regression, simultaneously extending single <span> <span>\\\\(L^p\\\\)</span> </span>-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00950-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00950-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

Abstract \(L^p\) -quantiles 是一类定义为非对称幂函数最小化的广义量值。它们包括量值(p=1)和期望值(p=2)作为特例。本文研究了复合量值回归,同时扩展了单一量值回归和复合量值回归。研究考虑了一种贝叶斯方法,利用了倾斜指数幂分布的新参数化。此外,回归系数的拉普拉斯先验允许进行变量选择。通过蒙特卡罗研究和对经验数据的应用,证明所提出的方法在大多数方面优于贝叶斯复合量化回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian composite $$L^p$$ -quantile regression

Abstract

\(L^p\) -quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, \(p=1\) , and expectiles, \(p=2\) , as special cases. This paper studies composite \(L^p\) -quantile regression, simultaneously extending single \(L^p\) -quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信