通过四曲面三等分的安德鲁斯-柯蒂斯三等分家族

Pub Date : 2024-02-19 DOI:10.1007/s10711-024-00891-6
Ethan Romary, Alexander Zupan
{"title":"通过四曲面三等分的安德鲁斯-柯蒂斯三等分家族","authors":"Ethan Romary, Alexander Zupan","doi":"10.1007/s10711-024-00891-6","DOIUrl":null,"url":null,"abstract":"<p>An R-link is an <i>n</i>-component link <i>L</i> in <span>\\(S^3\\)</span> such that Dehn surgery on <i>L</i> yields <span>\\(\\#^n(S^1 \\times S^2)\\)</span>. Every R-link <i>L</i> gives rise to a geometrically simply-connected homotopy 4-sphere <span>\\(X_L\\)</span>, which in turn can be used to produce a balanced presentation of the trivial group. Adapting work of Gompf, Scharlemann, and Thompson, Meier and Zupan produced a family of R-links <i>L</i>(<i>p</i>, <i>q</i>; <i>c</i>/<i>d</i>), where the pairs (<i>p</i>, <i>q</i>) and (<i>c</i>, <i>d</i>) are relatively prime and <i>c</i> is even. Within this family, <span>\\(L(3,2;2n/(2n+1))\\)</span> induces the infamous trivial group presentation <span>\\(\\langle x,y \\, | \\, xyx=yxy, x^{n+1}=y^n \\rangle \\)</span>, a popular collection of potential counterexamples to the Andrews–Curtis conjecture for <span>\\(n \\ge 3\\)</span>. In this paper, we use 4-manifold trisections to show that the group presentations corresponding to a different subfamily, <i>L</i>(3, 2; 4/<i>d</i>), are Andrews–Curtis trivial for all <i>d</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A family of Andrews–Curtis trivializations via 4-manifold trisections\",\"authors\":\"Ethan Romary, Alexander Zupan\",\"doi\":\"10.1007/s10711-024-00891-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An R-link is an <i>n</i>-component link <i>L</i> in <span>\\\\(S^3\\\\)</span> such that Dehn surgery on <i>L</i> yields <span>\\\\(\\\\#^n(S^1 \\\\times S^2)\\\\)</span>. Every R-link <i>L</i> gives rise to a geometrically simply-connected homotopy 4-sphere <span>\\\\(X_L\\\\)</span>, which in turn can be used to produce a balanced presentation of the trivial group. Adapting work of Gompf, Scharlemann, and Thompson, Meier and Zupan produced a family of R-links <i>L</i>(<i>p</i>, <i>q</i>; <i>c</i>/<i>d</i>), where the pairs (<i>p</i>, <i>q</i>) and (<i>c</i>, <i>d</i>) are relatively prime and <i>c</i> is even. Within this family, <span>\\\\(L(3,2;2n/(2n+1))\\\\)</span> induces the infamous trivial group presentation <span>\\\\(\\\\langle x,y \\\\, | \\\\, xyx=yxy, x^{n+1}=y^n \\\\rangle \\\\)</span>, a popular collection of potential counterexamples to the Andrews–Curtis conjecture for <span>\\\\(n \\\\ge 3\\\\)</span>. In this paper, we use 4-manifold trisections to show that the group presentations corresponding to a different subfamily, <i>L</i>(3, 2; 4/<i>d</i>), are Andrews–Curtis trivial for all <i>d</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00891-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00891-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个 R 链接是在\(S^3\)中的一个 n 分量链接 L,这样在 L 上的 Dehn 手术会产生 \(\#^n(S^1\times S^2)\)。每一个 R 链接 L 都会产生一个几何上简单连接的同调 4 球体 \(X_L\),它反过来又可以用来产生三元组的平衡呈现。根据贡普夫(Gompf)、沙勒曼(Scharlemann)和汤普森(Thompson)的研究,迈尔和祖潘提出了一个 R 链接 L(p, q; c/d)族,其中(p, q)和(c, d)是相对素数,c 是偶数。在这个家族中,L(3,2;2n/(2n+1))诱导了臭名昭著的琐碎群呈现(langle x,y \, | \, xyx=yxy, x^{n+1}=y^n \rangle \),这是安德鲁斯-柯蒂斯猜想(Andrews-Curtis conjecture for \(n \ge 3\)的一个流行的潜在反例集合。)在本文中,我们使用 4-manifold三分法来证明对应于不同子域 L(3, 2; 4/d) 的群呈现对于所有 d 都是安德鲁斯-柯蒂斯琐碎的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A family of Andrews–Curtis trivializations via 4-manifold trisections

分享
查看原文
A family of Andrews–Curtis trivializations via 4-manifold trisections

An R-link is an n-component link L in \(S^3\) such that Dehn surgery on L yields \(\#^n(S^1 \times S^2)\). Every R-link L gives rise to a geometrically simply-connected homotopy 4-sphere \(X_L\), which in turn can be used to produce a balanced presentation of the trivial group. Adapting work of Gompf, Scharlemann, and Thompson, Meier and Zupan produced a family of R-links L(pqc/d), where the pairs (pq) and (cd) are relatively prime and c is even. Within this family, \(L(3,2;2n/(2n+1))\) induces the infamous trivial group presentation \(\langle x,y \, | \, xyx=yxy, x^{n+1}=y^n \rangle \), a popular collection of potential counterexamples to the Andrews–Curtis conjecture for \(n \ge 3\). In this paper, we use 4-manifold trisections to show that the group presentations corresponding to a different subfamily, L(3, 2; 4/d), are Andrews–Curtis trivial for all d.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信