$${text {Sp}}_4({\mathbb {R}})$$ 中的薄超几何单色群的一个环族

Pub Date : 2024-02-19 DOI:10.1007/s10711-024-00893-4
Simion Filip, Charles Fougeron
{"title":"$${text {Sp}}_4({\\mathbb {R}})$$ 中的薄超几何单色群的一个环族","authors":"Simion Filip, Charles Fougeron","doi":"10.1007/s10711-024-00893-4","DOIUrl":null,"url":null,"abstract":"<p>We exhibit an infinite family of discrete subgroups of <span>\\({{\\,\\mathrm{\\textbf{Sp}}\\,}}_4(\\mathbb {R})\\)</span> which have a number of remarkable properties. Our results are established by showing that each group plays ping-pong on an appropriate set of cones. The groups arise as the monodromy of hypergeometric differential equations with parameters <span>\\(\\left( \\tfrac{N-3}{2N},\\tfrac{N-1}{2N}, \\tfrac{N+1}{2N}, \\tfrac{N+3}{2N}\\right) \\)</span> at infinity and maximal unipotent monodromy at zero, for any integer <span>\\(N\\ge 4\\)</span>. Additionally, we relate the cones used for ping-pong in <span>\\(\\mathbb {R}^4\\)</span> with crooked surfaces, which we then use to exhibit domains of discontinuity for the monodromy groups in the Lagrangian Grassmannian. These domains of discontinuity lead to uniformizations of variations of Hodge structure with Hodge numbers (1, 1, 1, 1).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cyclotomic family of thin hypergeometric monodromy groups in $${\\\\text {Sp}}_4({\\\\mathbb {R}})$$\",\"authors\":\"Simion Filip, Charles Fougeron\",\"doi\":\"10.1007/s10711-024-00893-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We exhibit an infinite family of discrete subgroups of <span>\\\\({{\\\\,\\\\mathrm{\\\\textbf{Sp}}\\\\,}}_4(\\\\mathbb {R})\\\\)</span> which have a number of remarkable properties. Our results are established by showing that each group plays ping-pong on an appropriate set of cones. The groups arise as the monodromy of hypergeometric differential equations with parameters <span>\\\\(\\\\left( \\\\tfrac{N-3}{2N},\\\\tfrac{N-1}{2N}, \\\\tfrac{N+1}{2N}, \\\\tfrac{N+3}{2N}\\\\right) \\\\)</span> at infinity and maximal unipotent monodromy at zero, for any integer <span>\\\\(N\\\\ge 4\\\\)</span>. Additionally, we relate the cones used for ping-pong in <span>\\\\(\\\\mathbb {R}^4\\\\)</span> with crooked surfaces, which we then use to exhibit domains of discontinuity for the monodromy groups in the Lagrangian Grassmannian. These domains of discontinuity lead to uniformizations of variations of Hodge structure with Hodge numbers (1, 1, 1, 1).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00893-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00893-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一个无穷的离散子群族,这些子群具有许多显著的性质:({{\,\mathrm{textbf{Sp}}\,}}_4(\mathbb {R})\)。我们的结果是通过证明每个群在一组适当的锥上打乒乓球而建立起来的。对于任意整数(N\ge 4\),这些群都是超几何微分方程的单romy,其参数为:\(\left(\tfrac{N-3}{2N},\tfrac{N-1}{2N},\tfrac{N+1}{2N},\tfrac{N+3}{2N}right) \)在无穷远处,最大单势单romy在零处。此外,我们将用于乒乓球的圆锥与弯曲表面联系起来,然后用它们来展示拉格朗日格拉斯曼中单色群的不连续域。这些不连续域导致了霍奇数为(1,1,1,1)的霍奇结构变化的统一化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A cyclotomic family of thin hypergeometric monodromy groups in $${\text {Sp}}_4({\mathbb {R}})$$

分享
查看原文
A cyclotomic family of thin hypergeometric monodromy groups in $${\text {Sp}}_4({\mathbb {R}})$$

We exhibit an infinite family of discrete subgroups of \({{\,\mathrm{\textbf{Sp}}\,}}_4(\mathbb {R})\) which have a number of remarkable properties. Our results are established by showing that each group plays ping-pong on an appropriate set of cones. The groups arise as the monodromy of hypergeometric differential equations with parameters \(\left( \tfrac{N-3}{2N},\tfrac{N-1}{2N}, \tfrac{N+1}{2N}, \tfrac{N+3}{2N}\right) \) at infinity and maximal unipotent monodromy at zero, for any integer \(N\ge 4\). Additionally, we relate the cones used for ping-pong in \(\mathbb {R}^4\) with crooked surfaces, which we then use to exhibit domains of discontinuity for the monodromy groups in the Lagrangian Grassmannian. These domains of discontinuity lead to uniformizations of variations of Hodge structure with Hodge numbers (1, 1, 1, 1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信