特性五中一类置换三项式的完整表征

Markus Grassl, Ferruh Özbudak, Buket Özkaya, Burcu Gülmez Temür
{"title":"特性五中一类置换三项式的完整表征","authors":"Markus Grassl, Ferruh Özbudak, Buket Özkaya, Burcu Gülmez Temür","doi":"10.1007/s12095-024-00705-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address an open problem posed by Bai and Xia in [2]. We study polynomials of the form <span>\\(f(x)=x^{4q+1}+\\lambda _1x^{5q}+\\lambda _2x^{q+4}\\)</span> over the finite field <span>\\({\\mathbb F}_{5^{k}}\\)</span>, which are not quasi-multiplicative equivalent to any of the known permutation polynomials in the literature. We find necessary and sufficient conditions on <span>\\(\\lambda _1, \\lambda _2 \\in {\\mathbb F}_{5^{k}}\\)</span> so that <i>f</i>(<i>x</i>) is a permutation monomial, binomial, or trinomial of <span>\\({\\mathbb F}_{5^{2k}}\\)</span>.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete characterization of a class of permutation trinomials in characteristic five\",\"authors\":\"Markus Grassl, Ferruh Özbudak, Buket Özkaya, Burcu Gülmez Temür\",\"doi\":\"10.1007/s12095-024-00705-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we address an open problem posed by Bai and Xia in [2]. We study polynomials of the form <span>\\\\(f(x)=x^{4q+1}+\\\\lambda _1x^{5q}+\\\\lambda _2x^{q+4}\\\\)</span> over the finite field <span>\\\\({\\\\mathbb F}_{5^{k}}\\\\)</span>, which are not quasi-multiplicative equivalent to any of the known permutation polynomials in the literature. We find necessary and sufficient conditions on <span>\\\\(\\\\lambda _1, \\\\lambda _2 \\\\in {\\\\mathbb F}_{5^{k}}\\\\)</span> so that <i>f</i>(<i>x</i>) is a permutation monomial, binomial, or trinomial of <span>\\\\({\\\\mathbb F}_{5^{2k}}\\\\)</span>.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00705-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00705-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了白和夏在 [2] 中提出的一个开放性问题。我们研究了有限域 \({\mathbb F}_{5^{k}}\) 上的形式为 \(f(x)=x^{4q+1}+\lambda _1x^{5q}+\lambda _2x^{q+4}/)的多项式,这些多项式与文献中任何已知的置换多项式都不是准相乘等价的。我们找到了关于 \(\lambda _1, \lambda _2 \in {\mathbb F}_{5^{k}}\) 的必要条件和充分条件,以便 f(x) 是 \({\mathbb F}_{5^{2k}}\) 的置换单项式、二项式或三项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete characterization of a class of permutation trinomials in characteristic five

In this paper, we address an open problem posed by Bai and Xia in [2]. We study polynomials of the form \(f(x)=x^{4q+1}+\lambda _1x^{5q}+\lambda _2x^{q+4}\) over the finite field \({\mathbb F}_{5^{k}}\), which are not quasi-multiplicative equivalent to any of the known permutation polynomials in the literature. We find necessary and sufficient conditions on \(\lambda _1, \lambda _2 \in {\mathbb F}_{5^{k}}\) so that f(x) is a permutation monomial, binomial, or trinomial of \({\mathbb F}_{5^{2k}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信