{"title":"有间隙序列的类贪心碱基","authors":"Miguel Berasategui, Pablo M. Berná","doi":"10.1007/s43037-024-00324-2","DOIUrl":null,"url":null,"abstract":"<p>In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the <span>\\({{\\textbf {n}}}\\)</span>-<i>t</i>-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for <span>\\({{\\textbf {n}}}\\)</span> with bounded quotient gaps, <span>\\({{\\textbf {n}}}\\)</span>-<i>t</i>-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedy-like bases for sequences with gaps\",\"authors\":\"Miguel Berasategui, Pablo M. Berná\",\"doi\":\"10.1007/s43037-024-00324-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the <span>\\\\({{\\\\textbf {n}}}\\\\)</span>-<i>t</i>-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for <span>\\\\({{\\\\textbf {n}}}\\\\)</span> with bounded quotient gaps, <span>\\\\({{\\\\textbf {n}}}\\\\)</span>-<i>t</i>-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00324-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00324-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the \({{\textbf {n}}}\)-t-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for \({{\textbf {n}}}\) with bounded quotient gaps, \({{\textbf {n}}}\)-t-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.