更快的确定性子轨迹聚类

Ivor van der Hoog, Thijs van der Horst, Tim Ophelders
{"title":"更快的确定性子轨迹聚类","authors":"Ivor van der Hoog, Thijs van der Horst, Tim Ophelders","doi":"arxiv-2402.13117","DOIUrl":null,"url":null,"abstract":"Given a trajectory $T$ and a distance $\\Delta$, we wish to find a set $C$ of\ncurves of complexity at most $\\ell$, such that we can cover $T$ with subcurves\nthat each are within Fr\\'echet distance $\\Delta$ to at least one curve in $C$.\nWe call $C$ an $(\\ell,\\Delta)$-clustering and aim to find an\n$(\\ell,\\Delta)$-clustering of minimum cardinality. This problem was introduced\nby Akitaya $et$ $al.$ (2021) and shown to be NP-complete. The main focus has\ntherefore been on bicriterial approximation algorithms, allowing for the\nclustering to be an $(\\ell, \\Theta(\\Delta))$-clustering of roughly optimal\nsize. We present algorithms that construct $(\\ell,4\\Delta)$-clusterings of\n$\\mathcal{O}(k \\log n)$ size, where $k$ is the size of the optimal $(\\ell,\n\\Delta)$-clustering. For the discrete Fr\\'echet distance, we use $\\mathcal{O}(n\n\\ell \\log n)$ space and $\\mathcal{O}(k n^2 \\log^3 n)$ deterministic worst case\ntime. For the continuous Fr\\'echet distance, we use $\\mathcal{O}(n^2 \\log n)$\nspace and $\\mathcal{O}(k n^3 \\log^3 n)$ time. Our algorithms significantly\nimprove upon the clustering quality (improving the approximation factor in\n$\\Delta$) and size (whenever $\\ell \\in \\Omega(\\log n)$). We offer deterministic\nrunning times comparable to known expected bounds. Additionally, in the\ncontinuous setting, we give a near-linear improvement upon the space usage.\nWhen compared only to deterministic results, we offer a near-linear speedup and\na near-quadratic improvement in the space usage. When we may restrict ourselves\nto only considering clusters where all subtrajectories are vertex-to-vertex\nsubcurves, we obtain even better results under the continuous Fr\\'echet\ndistance. Our algorithm becomes near quadratic and uses space that is near\nlinear in $n \\ell$.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster and Deterministic Subtrajectory Clustering\",\"authors\":\"Ivor van der Hoog, Thijs van der Horst, Tim Ophelders\",\"doi\":\"arxiv-2402.13117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a trajectory $T$ and a distance $\\\\Delta$, we wish to find a set $C$ of\\ncurves of complexity at most $\\\\ell$, such that we can cover $T$ with subcurves\\nthat each are within Fr\\\\'echet distance $\\\\Delta$ to at least one curve in $C$.\\nWe call $C$ an $(\\\\ell,\\\\Delta)$-clustering and aim to find an\\n$(\\\\ell,\\\\Delta)$-clustering of minimum cardinality. This problem was introduced\\nby Akitaya $et$ $al.$ (2021) and shown to be NP-complete. The main focus has\\ntherefore been on bicriterial approximation algorithms, allowing for the\\nclustering to be an $(\\\\ell, \\\\Theta(\\\\Delta))$-clustering of roughly optimal\\nsize. We present algorithms that construct $(\\\\ell,4\\\\Delta)$-clusterings of\\n$\\\\mathcal{O}(k \\\\log n)$ size, where $k$ is the size of the optimal $(\\\\ell,\\n\\\\Delta)$-clustering. For the discrete Fr\\\\'echet distance, we use $\\\\mathcal{O}(n\\n\\\\ell \\\\log n)$ space and $\\\\mathcal{O}(k n^2 \\\\log^3 n)$ deterministic worst case\\ntime. For the continuous Fr\\\\'echet distance, we use $\\\\mathcal{O}(n^2 \\\\log n)$\\nspace and $\\\\mathcal{O}(k n^3 \\\\log^3 n)$ time. Our algorithms significantly\\nimprove upon the clustering quality (improving the approximation factor in\\n$\\\\Delta$) and size (whenever $\\\\ell \\\\in \\\\Omega(\\\\log n)$). We offer deterministic\\nrunning times comparable to known expected bounds. Additionally, in the\\ncontinuous setting, we give a near-linear improvement upon the space usage.\\nWhen compared only to deterministic results, we offer a near-linear speedup and\\na near-quadratic improvement in the space usage. When we may restrict ourselves\\nto only considering clusters where all subtrajectories are vertex-to-vertex\\nsubcurves, we obtain even better results under the continuous Fr\\\\'echet\\ndistance. Our algorithm becomes near quadratic and uses space that is near\\nlinear in $n \\\\ell$.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.13117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.13117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一条轨迹 $T$ 和一个距离 $\elta$,我们希望找到一组复杂度最多为 $\ell$ 的曲线集合 $C$,这样我们就能用每条都与 $C$ 中至少一条曲线的距离在 Fr\'echet 距离 $\elta$ 以内的子曲线覆盖 $T$。Akitaya $et$ $al.$(2021 年)提出了这个问题,并证明它是 NP-完全的。因此,我们将主要精力放在了双标准近似算法上,允许聚类是一个大致最优大小的 $(\ell, \Theta(\Delta))$ 聚类。我们提出了构建$(\ell,4\Delta)$聚类的$mathcal{O}(k \log n)$大小的算法,其中$k$是最优$(\ell,\Delta)$聚类的大小。对于离散的 Fr\'echet 距离,我们使用 $\mathcal{O}(n\ell \log n)$ 空间和 $\mathcal{O}(k n^2 \log^3 n)$ 确定性最差时间。对于连续的 Fr\'echet 距离,我们使用了 $\mathcal{O}(n^2 \log n)$ 空间和 $\mathcal{O}(k n^3 \log^3 n)$ 时间。我们的算法大大提高了聚类质量(提高了 $\Delta$ 的近似系数)和大小(只要 $\ell \ in \Omega(\log n)$)。我们提供的确定性运行时间与已知的预期边界相当。如果仅与确定性结果相比,我们提供了近乎线性的速度提升和近乎二次方的空间使用改善。当我们可以限制自己只考虑所有子轨迹都是顶点到顶点的子曲线的簇时,我们在连续的 Fr\'echetdistance 下获得了更好的结果。我们的算法变得接近二次方,使用的空间也接近 $n \ell$ 的线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster and Deterministic Subtrajectory Clustering
Given a trajectory $T$ and a distance $\Delta$, we wish to find a set $C$ of curves of complexity at most $\ell$, such that we can cover $T$ with subcurves that each are within Fr\'echet distance $\Delta$ to at least one curve in $C$. We call $C$ an $(\ell,\Delta)$-clustering and aim to find an $(\ell,\Delta)$-clustering of minimum cardinality. This problem was introduced by Akitaya $et$ $al.$ (2021) and shown to be NP-complete. The main focus has therefore been on bicriterial approximation algorithms, allowing for the clustering to be an $(\ell, \Theta(\Delta))$-clustering of roughly optimal size. We present algorithms that construct $(\ell,4\Delta)$-clusterings of $\mathcal{O}(k \log n)$ size, where $k$ is the size of the optimal $(\ell, \Delta)$-clustering. For the discrete Fr\'echet distance, we use $\mathcal{O}(n \ell \log n)$ space and $\mathcal{O}(k n^2 \log^3 n)$ deterministic worst case time. For the continuous Fr\'echet distance, we use $\mathcal{O}(n^2 \log n)$ space and $\mathcal{O}(k n^3 \log^3 n)$ time. Our algorithms significantly improve upon the clustering quality (improving the approximation factor in $\Delta$) and size (whenever $\ell \in \Omega(\log n)$). We offer deterministic running times comparable to known expected bounds. Additionally, in the continuous setting, we give a near-linear improvement upon the space usage. When compared only to deterministic results, we offer a near-linear speedup and a near-quadratic improvement in the space usage. When we may restrict ourselves to only considering clusters where all subtrajectories are vertex-to-vertex subcurves, we obtain even better results under the continuous Fr\'echet distance. Our algorithm becomes near quadratic and uses space that is near linear in $n \ell$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信