贪婪的单色岛分区

Steven van den Broek, Wouter Meulemans, Bettina Speckmann
{"title":"贪婪的单色岛分区","authors":"Steven van den Broek, Wouter Meulemans, Bettina Speckmann","doi":"arxiv-2402.13340","DOIUrl":null,"url":null,"abstract":"Constructing partitions of colored points is a well-studied problem in\ndiscrete and computational geometry. We study the problem of creating a\nminimum-cardinality partition into monochromatic islands. Our input is a set\n$S$ of $n$ points in the plane where each point has one of $k \\geq 2$ colors. A\nset of points is monochromatic if it contains points of only one color. An\nisland $I$ is a subset of $S$ such that $\\mathcal{CH}(I) \\cap S = I$, where\n$\\mathcal{CH}(I)$ denotes the convex hull of $I$. We identify an island with\nits convex hull; therefore, a partition into islands has the additional\nrequirement that the convex hulls of the islands are pairwise-disjoint. We\npresent three greedy algorithms for constructing island partitions and analyze\ntheir approximation ratios.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greedy Monochromatic Island Partitions\",\"authors\":\"Steven van den Broek, Wouter Meulemans, Bettina Speckmann\",\"doi\":\"arxiv-2402.13340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing partitions of colored points is a well-studied problem in\\ndiscrete and computational geometry. We study the problem of creating a\\nminimum-cardinality partition into monochromatic islands. Our input is a set\\n$S$ of $n$ points in the plane where each point has one of $k \\\\geq 2$ colors. A\\nset of points is monochromatic if it contains points of only one color. An\\nisland $I$ is a subset of $S$ such that $\\\\mathcal{CH}(I) \\\\cap S = I$, where\\n$\\\\mathcal{CH}(I)$ denotes the convex hull of $I$. We identify an island with\\nits convex hull; therefore, a partition into islands has the additional\\nrequirement that the convex hulls of the islands are pairwise-disjoint. We\\npresent three greedy algorithms for constructing island partitions and analyze\\ntheir approximation ratios.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.13340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.13340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

构造彩色点的分区是离散几何和计算几何中一个研究得很透彻的问题。我们研究的问题是将最小心率分割为单色岛。我们的输入是由平面上 $n$ 点组成的集合$S$,其中每个点都有 $k \geq 2$ 种颜色。如果点集合只包含一种颜色的点,那么它就是单色的。岛屿 $I$ 是 $S$ 的一个子集,使得 $\mathcal{CH}(I) \cap S = I$,其中$mathcal{CH}(I)$ 表示 $I$ 的凸壳。我们将一个岛与它的凸壳进行标识;因此,将一个岛分割成多个岛还有一个额外的要求,即岛的凸壳必须是成对相交的。我们提出了三种构建岛屿分割的贪婪算法,并分析了它们的近似率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greedy Monochromatic Island Partitions
Constructing partitions of colored points is a well-studied problem in discrete and computational geometry. We study the problem of creating a minimum-cardinality partition into monochromatic islands. Our input is a set $S$ of $n$ points in the plane where each point has one of $k \geq 2$ colors. A set of points is monochromatic if it contains points of only one color. An island $I$ is a subset of $S$ such that $\mathcal{CH}(I) \cap S = I$, where $\mathcal{CH}(I)$ denotes the convex hull of $I$. We identify an island with its convex hull; therefore, a partition into islands has the additional requirement that the convex hulls of the islands are pairwise-disjoint. We present three greedy algorithms for constructing island partitions and analyze their approximation ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信