简单二次微分系统的不可控性和动力学新见解

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Jingjia Qu, Shuangling Yang
{"title":"简单二次微分系统的不可控性和动力学新见解","authors":"Jingjia Qu, Shuangling Yang","doi":"10.1007/s44198-024-00174-4","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the integrability and qualitative behaviors of a quadratic differential system </p><span>$$\\dot{x}=a+yz,\\quad\\dot{y}=-y + x^{2},\\quad\\dot{z}=b-4x.$$</span><p>We provide some new perspectives on the system and reveal its diverse properties, including non-integrability in the sense of absence of first integrals, bifurcations of co-dimension one or two, Jacobi instability and dynamics at infinity.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"270 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Insights on Non-integrability and Dynamics in a Simple Quadratic Differential System\",\"authors\":\"Jingjia Qu, Shuangling Yang\",\"doi\":\"10.1007/s44198-024-00174-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on the integrability and qualitative behaviors of a quadratic differential system </p><span>$$\\\\dot{x}=a+yz,\\\\quad\\\\dot{y}=-y + x^{2},\\\\quad\\\\dot{z}=b-4x.$$</span><p>We provide some new perspectives on the system and reveal its diverse properties, including non-integrability in the sense of absence of first integrals, bifurcations of co-dimension one or two, Jacobi instability and dynamics at infinity.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"270 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00174-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00174-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究重点关注二次微分系统 $$\dot{x}=a+yz,\quad\dot{y}=-y + x^{2},\quad\dot{z}=b-4x 的可整性和定性行为。我们为该系统提供了一些新的视角,并揭示了它的多种特性,包括无初积分意义上的非可整性、一维或二维分岔、雅可比不稳定性和无穷大时的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Insights on Non-integrability and Dynamics in a Simple Quadratic Differential System

New Insights on Non-integrability and Dynamics in a Simple Quadratic Differential System

This study focuses on the integrability and qualitative behaviors of a quadratic differential system

$$\dot{x}=a+yz,\quad\dot{y}=-y + x^{2},\quad\dot{z}=b-4x.$$

We provide some new perspectives on the system and reveal its diverse properties, including non-integrability in the sense of absence of first integrals, bifurcations of co-dimension one or two, Jacobi instability and dynamics at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信